Matching Items (22)
151349-Thumbnail Image.png
Description
This dissertation addresses the research challenge of developing efficient new methods for discovering useful patterns and knowledge in large volumes of electronically collected spatiotemporal activity data. I propose to analyze three types of such spatiotemporal activity data in a methodological framework that integrates spatial analysis, data mining, machine learning, and

This dissertation addresses the research challenge of developing efficient new methods for discovering useful patterns and knowledge in large volumes of electronically collected spatiotemporal activity data. I propose to analyze three types of such spatiotemporal activity data in a methodological framework that integrates spatial analysis, data mining, machine learning, and geovisualization techniques. Three different types of spatiotemporal activity data were collected through different data collection approaches: (1) crowd sourced geo-tagged digital photos, representing people's travel activity, were retrieved from the website Panoramio.com through information retrieval techniques; (2) the same techniques were used to crawl crowd sourced GPS trajectory data and related metadata of their daily activities from the website OpenStreetMap.org; and finally (3) preschool children's daily activities and interactions tagged with time and geographical location were collected with a novel TabletPC-based behavioral coding system. The proposed methodology is applied to these data to (1) automatically recommend optimal multi-day and multi-stay travel itineraries for travelers based on discovered attractions from geo-tagged photos, (2) automatically detect movement types of unknown moving objects from GPS trajectories, and (3) explore dynamic social and socio-spatial patterns of preschool children's behavior from both geographic and social perspectives.
ContributorsLi, Xun (Author) / Anselin, Luc (Thesis advisor) / Koschinsky, Julia (Committee member) / Maciejewski, Ross (Committee member) / Rey, Sergio (Committee member) / Griffin, William (Committee member) / Arizona State University (Publisher)
Created2012
153442-Thumbnail Image.png
Description
It has been identified in the literature that there exists a link between the built environment and non-motorized transport. This study aims to contribute to existing literature on the effects of the built environment on cycling, examining the case of the whole State of California. Physical built environment features are

It has been identified in the literature that there exists a link between the built environment and non-motorized transport. This study aims to contribute to existing literature on the effects of the built environment on cycling, examining the case of the whole State of California. Physical built environment features are classified into six groups as: 1) local density, 2) diversity of land use, 3) road connectivity, 4) bike route length, 5) green space, 6) job accessibility. Cycling trips in one week for all children, school children, adults and employed-adults are investigated separately. The regression analysis shows that cycling trips is significantly associated with some features of built environment when many socio-demographic factors are taken into account. Street intersections, bike route length tend to increase the use of bicycle. These effects are well-aligned with literature. Moreover, both local and regional job accessibility variables are statistically significant in two adults' models. However, residential density always has a significant negatively effect on cycling trips, which is still need further research to confirm. Also, there is a gap in literature on how green space affects cycling, but the results of this study is still too unclear to make it up. By elasticity analysis, this study concludes that street intersections is the most powerful predictor on cycling trips. From another perspective, the effects of built environment on cycling at workplace (or school) are distinguished from at home. This study implies that a wide range of measures are available for planners to control vehicle travel by improving cycling-level in California.
ContributorsWang, Kailai, M.U.E.P (Author) / Salon, Deborah (Thesis advisor) / Rey, Sergio (Committee member) / Li, Wenwen (Committee member) / Arizona State University (Publisher)
Created2015
154079-Thumbnail Image.png
Description
Nearly 25 years ago, parallel computing techniques were first applied to vector spatial analysis methods. This initial research was driven by the desire to reduce computing times in order to support scaling to larger problem sets. Since this initial work, rapid technological advancement has driven the availability of High Performance

Nearly 25 years ago, parallel computing techniques were first applied to vector spatial analysis methods. This initial research was driven by the desire to reduce computing times in order to support scaling to larger problem sets. Since this initial work, rapid technological advancement has driven the availability of High Performance Computing (HPC) resources, in the form of multi-core desktop computers, distributed geographic information processing systems, e.g. computational grids, and single site HPC clusters. In step with increases in computational resources, significant advancement in the capabilities to capture and store large quantities of spatially enabled data have been realized. A key component to utilizing vast data quantities in HPC environments, scalable algorithms, have failed to keep pace. The National Science Foundation has identified the lack of scalable algorithms in codified frameworks as an essential research product. Fulfillment of this goal is challenging given the lack of a codified theoretical framework mapping atomic numeric operations from the spatial analysis stack to parallel programming paradigms, the diversity in vernacular utilized by research groups, the propensity for implementations to tightly couple to under- lying hardware, and the general difficulty in realizing scalable parallel algorithms. This dissertation develops a taxonomy of parallel vector spatial analysis algorithms with classification being defined by root mathematical operation and communication pattern, a computational dwarf. Six computational dwarfs are identified, three being drawn directly from an existing parallel computing taxonomy and three being created to capture characteristics unique to spatial analysis algorithms. The taxonomy provides a high-level classification decoupled from low-level implementation details such as hardware, communication protocols, implementation language, decomposition method, or file input and output. By taking a high-level approach implementation specifics are broadly proposed, breadth of coverage is achieved, and extensibility is ensured. The taxonomy is both informed and informed by five case studies im- plemented across multiple, divergent hardware environments. A major contribution of this dissertation is a theoretical framework to support the future development of concrete parallel vector spatial analysis frameworks through the identification of computational dwarfs and, by extension, successful implementation strategies.
ContributorsLaura, Jason (Author) / Rey, Sergio J. (Thesis advisor) / Anselin, Luc (Committee member) / Wang, Shaowen (Committee member) / Li, Wenwen (Committee member) / Arizona State University (Publisher)
Created2015
157264-Thumbnail Image.png
Description
Big data that contain geo-referenced attributes have significantly reformed the way that I process and analyze geospatial data. Compared with the expected benefits received in the data-rich environment, more data have not always contributed to more accurate analysis. “Big but valueless” has becoming a critical concern to the community of

Big data that contain geo-referenced attributes have significantly reformed the way that I process and analyze geospatial data. Compared with the expected benefits received in the data-rich environment, more data have not always contributed to more accurate analysis. “Big but valueless” has becoming a critical concern to the community of GIScience and data-driven geography. As a highly-utilized function of GeoAI technique, deep learning models designed for processing geospatial data integrate powerful computing hardware and deep neural networks into various dimensions of geography to effectively discover the representation of data. However, limitations of these deep learning models have also been reported when People may have to spend much time on preparing training data for implementing a deep learning model. The objective of this dissertation research is to promote state-of-the-art deep learning models in discovering the representation, value and hidden knowledge of GIS and remote sensing data, through three research approaches. The first methodological framework aims to unify varied shadow into limited number of patterns, with the convolutional neural network (CNNs)-powered shape classification, multifarious shadow shapes with a limited number of representative shadow patterns for efficient shadow-based building height estimation. The second research focus integrates semantic analysis into a framework of various state-of-the-art CNNs to support human-level understanding of map content. The final research approach of this dissertation focuses on normalizing geospatial domain knowledge to promote the transferability of a CNN’s model to land-use/land-cover classification. This research reports a method designed to discover detailed land-use/land-cover types that might be challenging for a state-of-the-art CNN’s model that previously performed well on land-cover classification only.
ContributorsZhou, Xiran (Author) / Li, Wenwen (Thesis advisor) / Myint, Soe Win (Committee member) / Arundel, Samantha Thompson (Committee member) / Arizona State University (Publisher)
Created2019
136465-Thumbnail Image.png
Description
The humanities as a discipline have typically not used a rigid or technical method of assessment in the process of analysis. GIScience offers numerous benefits to this discipline by applying spatial analysis to rigorously understand it. Photography studios developed in the mid-19th Century as a highly popular business and emerging

The humanities as a discipline have typically not used a rigid or technical method of assessment in the process of analysis. GIScience offers numerous benefits to this discipline by applying spatial analysis to rigorously understand it. Photography studios developed in the mid-19th Century as a highly popular business and emerging technology. This project was initiated by Dr. Jeremy Rowe with support from the ASU Emeritus College Research and Creative Activity and Undergraduate Research Initiative grants, and seeks to use GIS tools to understand the explosive growth of photography studios in the New York City area, specifically Manhattan and Brooklyn. Demonstrated in this project are several capabilities of the ESRI online GIS, including queries for year information, a tool showing growth over time, and a generated density map of photography studios.
ContributorsAbeln, Garrett James (Author) / Li, Wenwen (Thesis director) / Rowe, Jeremy (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Politics and Global Studies (Contributor)
Created2015-05
136493-Thumbnail Image.png
Description
In the mid-1970s, social scientists began observing marital dyad conversations in laboratory settings with the hope of determining which observable features best discriminate couples who report being either satisfied or unsatisfied with their relationship. These studies continued until about a decade ago when, in addition to increasing laboratory costs slowing

In the mid-1970s, social scientists began observing marital dyad conversations in laboratory settings with the hope of determining which observable features best discriminate couples who report being either satisfied or unsatisfied with their relationship. These studies continued until about a decade ago when, in addition to increasing laboratory costs slowing the pace of new data collection, researchers realized that distressed couples were easier to quantitatively describe than nondistressed couples. Specifically, distressed couples exhibit rigid patterns of negativity whereas couples who report being maritally satisfied show minimal rigidity in the opposite direction \u2014 positivity. This was, and is, a theoretical dilemma: how can clinicians understand and eventually modify distressed relationships when the behavior of satisfied couples are less patterned, less predictable and more diverse? A recent study by Griffin and Li (2015), using contemporary machine learning techniques, reanalyzed existing marital interaction data and found that, contrary to expectation and existing theory, nondistressed couples should be further subdivided into two groups \u2014 those who are predictably positive or neutral and those who interact using diverse and varying levels of positive and negative behaviors. The latter group is the focus of this thesis. Using these recent findings as discussion points, I review how the unexpected behaviors in this novel group can maintain and possibly perpetuate marital satisfaction.
Created2015-05
154788-Thumbnail Image.png
Description
Urban growth, from regional sprawl to global urbanization, is the most rapid, drastic, and irreversible form of human modification to the natural environment. Extensive land cover modifications during urban growth have altered the local energy balance, causing the city warmer than its surrounding rural environment, a phenomenon known as an

Urban growth, from regional sprawl to global urbanization, is the most rapid, drastic, and irreversible form of human modification to the natural environment. Extensive land cover modifications during urban growth have altered the local energy balance, causing the city warmer than its surrounding rural environment, a phenomenon known as an urban heat island (UHI). How are the seasonal and diurnal surface temperatures related to the land surface characteristics, and what land cover types and/or patterns are desirable for ameliorating climate in a fast growing desert city? This dissertation scrutinizes these questions and seeks to address them using a combination of satellite remote sensing, geographical information science, and spatial statistical modeling techniques.

This dissertation includes two main parts. The first part proposes to employ the continuous, pixel-based landscape gradient models in comparison to the discrete, patch-based mosaic models and evaluates model efficiency in two empirical contexts: urban landscape pattern mapping and land cover dynamics monitoring. The second part formalizes a novel statistical model called spatially filtered ridge regression (SFRR) that ensures accurate and stable statistical estimation despite the existence of multicollinearity and the inherent spatial effect.

Results highlight the strong potential of local indicators of spatial dependence in landscape pattern mapping across various geographical scales. This is based on evidence from a sequence of exploratory comparative analyses and a time series study of land cover dynamics over Phoenix, AZ. The newly proposed SFRR method is capable of producing reliable estimates when analyzing statistical relationships involving geographic data and highly correlated predictor variables. An empirical application of the SFRR over Phoenix suggests that urban cooling can be achieved not only by altering the land cover abundance, but also by optimizing the spatial arrangements of urban land cover features. Considering the limited water supply, rapid urban expansion, and the continuously warming climate, judicious design and planning of urban land cover features is of increasing importance for conserving resources and enhancing quality of life.
ContributorsFan, Chao (Author) / Myint, Soe W (Thesis advisor) / Li, Wenwen (Committee member) / Rey, Sergio J (Committee member) / Arizona State University (Publisher)
Created2016
154968-Thumbnail Image.png
Description
Economic inequality is always presented as how economic metrics vary amongst individuals in a group, amongst groups in a population, or amongst some regions. Economic inequality can substantially impact the social environment, socioeconomics as well as human living standard. Since economic inequality always plays an important role in our social

Economic inequality is always presented as how economic metrics vary amongst individuals in a group, amongst groups in a population, or amongst some regions. Economic inequality can substantially impact the social environment, socioeconomics as well as human living standard. Since economic inequality always plays an important role in our social environment, its study has attracted much attention from scholars in various research fields, such as development economics, sociology and political science. On the other hand, economic inequality can result from many factors, phenomena, and complex procedures, including policy, ethnic, education, globalization and etc. However, the spatial dimension in economic inequality research did not draw much attention from scholars until early 2000s. Spatial dependency, perform key roles in economic inequality analysis. The spatial econometric methods do not merely convey a consequence of the characters of the data exclusively. More importantly, they also respect and quantify the spatial effects in the economic inequality. As aforementioned, although regional economic inequality starts to attract scholars' attention in both economy and regional science domains, corresponding methodologies to examine such regional inequality remain in their preliminary phase, which need substantial further exploration. My thesis aims at contributing to the body of knowledge in the method development to support economic inequality studies by exploring the feasibility of a set of new analytical methods in use of regional inequality analysis. These methods include Theil's T statistic, geographical rank Markov and new methods applying graph theory. The thesis will also leverage these methods to compare the inequality between China and US, two large economic entities in the world, because of the long history of economic development as well as the corresponding evolution of inequality in US; the rapid economic development and consequent high variation of economic inequality in China.
ContributorsWang, Sizhe (Author) / Rey, Sergio J (Thesis advisor) / Li, Wenwen (Committee member) / Salon, Deborah (Committee member) / Arizona State University (Publisher)
Created2016
128151-Thumbnail Image.png
Description

The world is undergoing rapid changes in its climate, environment, and ecosystems due to increasing population growth, urbanization, and industrialization. Numerical simulation is becoming an important vehicle to enhance the understanding of these changes and their impacts, with regional and global simulation models producing vast amounts of data. Comprehending these

The world is undergoing rapid changes in its climate, environment, and ecosystems due to increasing population growth, urbanization, and industrialization. Numerical simulation is becoming an important vehicle to enhance the understanding of these changes and their impacts, with regional and global simulation models producing vast amounts of data. Comprehending these multidimensional data and fostering collaborative scientific discovery requires the development of new visualization techniques. In this paper, we present a cyberinfrastructure solution - PolarGlobe - that enables comprehensive analysis and collaboration. PolarGlobe is implemented upon an emerging web graphics library, WebGL, and an open source virtual globe system Cesium, which has the ability to map spatial data onto a virtual Earth. We have also integrated volume rendering techniques, value and spatial filters, and vertical profile visualization to improve rendered images and support a comprehensive exploration of multi-dimensional spatial data. In this study, the climate simulation dataset produced by the extended polar version of the well-known Weather Research and Forecasting Model (WRF) is used to test the proposed techniques. PolarGlobe is also easily extendable to enable data visualization for other Earth Science domains, such as oceanography, weather, or geology.

ContributorsWang, Sizhe (Author) / Li, Wenwen (Author) / Wang, Feng (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-06-26
128671-Thumbnail Image.png
Description

Arctic cyclone activity has a significant association with Arctic warming and Arctic ice decline. Cyclones in the North Pole are more complex and less developed than those in tropical regions. Identifying polar cyclones proves to be a task of greater complexity. To tackle this challenge, a new method which utilizes

Arctic cyclone activity has a significant association with Arctic warming and Arctic ice decline. Cyclones in the North Pole are more complex and less developed than those in tropical regions. Identifying polar cyclones proves to be a task of greater complexity. To tackle this challenge, a new method which utilizes pressure level data and velocity field is proposed to improve the identification accuracy. In addition, the dynamic, simulative cyclone visualized with a 4D (four-dimensional) wind field further validated the identification result. A knowledge-driven system is eventually constructed for visualizing and analyzing an atmospheric phenomenon (cyclone) in the North Pole. The cyclone is simulated with WebGL on in a web environment using particle tracing. To achieve interactive frame rates, the graphics processing unit (GPU) is used to accelerate the process of particle advection. It is concluded with the experimental results that: (1) the cyclone identification accuracy of the proposed method is 95.6% when compared with the NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis data; (2) the integrated knowledge-driven visualization system allows for streaming and rendering of millions of particles with an interactive frame rate to support knowledge discovery in the complex climate system of the Arctic region.

ContributorsWang, Feng (Author) / Li, Wenwen (Author) / Wang, Sizhe (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-09-05