Matching Items (43)

MRI-Based Texture Analysis to Differentiate Sinonasal Squamous Cell Carcinoma from Inverted Papilloma

Description

ABSTRACT BACKGROUND AND PURPOSE: Sinonasal inverted papilloma (IP) can harbor squamous cell carcinoma (SCC). Consequently, differentiating these tumors is important. The objective of this study was to determine if MRI-based

ABSTRACT BACKGROUND AND PURPOSE: Sinonasal inverted papilloma (IP) can harbor squamous cell carcinoma (SCC). Consequently, differentiating these tumors is important. The objective of this study was to determine if MRI-based texture analysis can differentiate SCC from IP and provide supplementary information to the radiologist. MATERIALS AND METHODS: Adult patients who had IP or SCC resected were eligible (coexistent IP and SCC were excluded). Inclusion required tumor size greater than 1.5 cm and a pre-operative MRI with axial T1, axial T2, and axial T1 post-contrast sequences. Five well- established texture analysis algorithms were applied to an ROI from the largest tumor cross- section. For a training dataset, machine-learning algorithms were used to identify the most accurate model, and performance was also evaluated in a validation dataset. Based on three separate blinded reviews of the ROI, isolated tumor, and entire images, two neuroradiologists predicted tumor type in consensus. RESULTS: The IP and SCC cohorts were matched for age and gender, while SCC tumor volume was larger (p=0.001). The best classification model achieved similar accuracies for training (17 SCC, 16 IP) and validation (7 SCC, 6 IP) datasets of 90.9% and 84.6% respectively (p=0.537). The machine-learning accuracy for the entire cohort (89.1%) was better than that of the neuroradiologist ROI review (56.5%, p=0.0004) but not significantly different from the neuroradiologist review of the tumors (73.9%, p=0.060) or entire images (87.0%, p=0.748). CONCLUSION: MRI-based texture analysis has potential to differentiate SCC from IP and may provide incremental information to the neuroradiologist, particularly for small or heterogeneous tumors.

Contributors

Agent

Created

Date Created
  • 2016-12

135788-Thumbnail Image.png

Cost Driven Agent Based Simulation of the Department of Defense Acquisition System

Description

The Department of Defense (DoD) acquisition system is a complex system riddled with cost and schedule overruns. These cost and schedule overruns are very serious issues as the acquisition system

The Department of Defense (DoD) acquisition system is a complex system riddled with cost and schedule overruns. These cost and schedule overruns are very serious issues as the acquisition system is responsible for aiding U.S. warfighters. Hence, if the acquisition process is failing that could be a potential threat to our nation's security. Furthermore, the DoD acquisition system is responsible for proper allocation of billions of taxpayer's dollars and employs many civilians and military personnel. Much research has been done in the past on the acquisition system with little impact or success. One reason for this lack of success in improving the system is the lack of accurate models to test theories. This research is a continuation of the effort on the Enterprise Requirements and Acquisition Model (ERAM), a discrete event simulation modeling research on DoD acquisition system. We propose to extend ERAM using agent-based simulation principles due to the many interactions among the subsystems of the acquisition system. We initially identify ten sub models needed to simulate the acquisition system. This research focuses on three sub models related to the budget of acquisition programs. In this thesis, we present the data collection, data analysis, initial implementation, and initial validation needed to facilitate these sub models and lay the groundwork for a full agent-based simulation of the DoD acquisition system.

Contributors

Agent

Created

Date Created
  • 2016-05

128923-Thumbnail Image.png

Cellular Capacities for High-Light Acclimation and Changing Lipid Profiles Across Life Cycle Stages of the Green Alga Haematococcus Pluvialis

Description

The unicellular microalga Haematococcus pluvialis has emerged as a promising biomass feedstock for the ketocarotenoid astaxanthin and neutral lipid triacylglycerol. Motile flagellates, resting palmella cells, and cysts are the major

The unicellular microalga Haematococcus pluvialis has emerged as a promising biomass feedstock for the ketocarotenoid astaxanthin and neutral lipid triacylglycerol. Motile flagellates, resting palmella cells, and cysts are the major life cycle stages of H. pluvialis. Fast-growing motile cells are usually used to induce astaxanthin and triacylglycerol biosynthesis under stress conditions (high light or nutrient starvation); however, productivity of biomass and bioproducts are compromised due to the susceptibility of motile cells to stress. This study revealed that the Photosystem II (PSII) reaction center D1 protein, the manganese-stabilizing protein PsbO, and several major membrane glycerolipids (particularly for chloroplast membrane lipids monogalactosyldiacylglycerol and phosphatidylglycerol), decreased dramatically in motile cells under high light (HL). In contrast, palmella cells, which are transformed from motile cells after an extended period of time under favorable growth conditions, have developed multiple protective mechanisms - including reduction in chloroplast membrane lipids content, downplay of linear photosynthetic electron transport, and activating nonphotochemical quenching mechanisms - while accumulating triacylglycerol. Consequently, the membrane lipids and PSII proteins (D1 and PsbO) remained relatively stable in palmella cells subjected to HL. Introducing palmella instead of motile cells to stress conditions may greatly increase astaxanthin and lipid production in H. pluvialis culture.

Contributors

Agent

Created

Date Created
  • 2014-09-15

128818-Thumbnail Image.png

Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma

Description

Background
Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM). Contrast-enhanced MRI (CE-MRI) targets enhancing core (ENH) but yields adequate tumor

Background
Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM). Contrast-enhanced MRI (CE-MRI) targets enhancing core (ENH) but yields adequate tumor in only ~60% of cases. Further, CE-MRI poorly localizes infiltrative tumor within surrounding non-enhancing parenchyma, or brain-around-tumor (BAT), despite the importance of characterizing this tumor segment, which universally recurs. In this study, we use multiple texture analysis and machine learning (ML) algorithms to analyze multi-parametric MRI, and produce new images indicating tumor-rich targets in GBM.
Methods
We recruited primary GBM patients undergoing image-guided biopsies and acquired pre-operative MRI: CE-MRI, Dynamic-Susceptibility-weighted-Contrast-enhanced-MRI, and Diffusion Tensor Imaging. Following image coregistration and region of interest placement at biopsy locations, we compared MRI metrics and regional texture with histologic diagnoses of high- vs low-tumor content (≥80% vs <80% tumor nuclei) for corresponding samples. In a training set, we used three texture analysis algorithms and three ML methods to identify MRI-texture features that optimized model accuracy to distinguish tumor content. We confirmed model accuracy in a separate validation set.
Results
We collected 82 biopsies from 18 GBMs throughout ENH and BAT. The MRI-based model achieved 85% cross-validated accuracy to diagnose high- vs low-tumor in the training set (60 biopsies, 11 patients). The model achieved 81.8% accuracy in the validation set (22 biopsies, 7 patients).
Conclusion
Multi-parametric MRI and texture analysis can help characterize and visualize GBM’s spatial histologic heterogeneity to identify regional tumor-rich biopsy targets.

Contributors

Agent

Created

Date Created
  • 2015-11-24

131810-Thumbnail Image.png

mHealth Patient Care Improvement Study Through Statistical Analysis

Description

Technological applications are continually being developed in the healthcare industry as technology becomes increasingly more available. In recent years, companies have started creating mobile applications to address various conditions and

Technological applications are continually being developed in the healthcare industry as technology becomes increasingly more available. In recent years, companies have started creating mobile applications to address various conditions and diseases. This falls under mHealth or the “use of mobile phones and other wireless technology in medical care” (Rouse, 2018). The goal of this study was to identify if data gathered through the use of mHealth methods can be used to build predictive models. The first part of this thesis contains a literature review presenting relevant definitions and several potential studies that involved the use of technology in healthcare applications. The second part of this thesis focuses on data from one study, where regression analysis is used to develop predictive models.

Rouse, M. (2018). mHealth (mobile health). Retrieved from https://searchhealthit.techtarget.com/definition/mHealth

Contributors

Agent

Created

Date Created
  • 2020-05

129669-Thumbnail Image.png

Combined Effect of Initial Biomass Density and Nitrogen Concentration on Growth and Astaxanthin Production of Haematococcus Pluvialis (Chlorophyta) in Outdoor Cultivation

Description

Nitrogen availability and cell density each affects growth and cellular astaxanthin content of Haematococcus pluvialis, but possible combined effects of these two factors on the content and productivity of astaxanthin,

Nitrogen availability and cell density each affects growth and cellular astaxanthin content of Haematococcus pluvialis, but possible combined effects of these two factors on the content and productivity of astaxanthin, especially under outdoor culture conditions, is less understood. In this study, the effects of the initial biomass densities IBDs of 0.1, 0.5, 0.8, 1.5, 2.7, 3.5, and 5.0 g L-1 DW and initial nitrogen concentrations of 0, 4.4, 8.8, and 17.6 mM nitrate on growth and cellular astaxanthin content of H. pluvialis Flotow K-0084 were investigated in outdoor glass column photobioreactors in a batch culture mode. A low IBD of 0.1 g L-1 DW led to photo-bleaching of the culture within 1-2 days. When the IBD was 0.5 g L-1 and above, the rate at which the increase in biomass density and the astaxanthin content on a per cell basis was higher at lower IBD. When the IBD was optimal (i.e., 0.8 g L-1), the maximum astaxanthin content of 3.8% of DW was obtained in the absence of nitrogen, whereas the maximum astaxanthin productivity of 16.0 mg L-1 d(-1) was obtained in the same IBD culture containing 4.4 mM nitrogen. The strategies for achieving maximum Haematococcus biomass productivity and for maximum cellular astaxanthin content are discussed.

Contributors

Created

Date Created
  • 2013-08-30

149928-Thumbnail Image.png

Integrative analyses of diverse biological data sources

Description

The technology expansion seen in the last decade for genomics research has permitted the generation of large-scale data sources pertaining to molecular biological assays, genomics, proteomics, transcriptomics and other modern

The technology expansion seen in the last decade for genomics research has permitted the generation of large-scale data sources pertaining to molecular biological assays, genomics, proteomics, transcriptomics and other modern omics catalogs. New methods to analyze, integrate and visualize these data types are essential to unveil relevant disease mechanisms. Towards these objectives, this research focuses on data integration within two scenarios: (1) transcriptomic, proteomic and functional information and (2) real-time sensor-based measurements motivated by single-cell technology. To assess relationships between protein abundance, transcriptomic and functional data, a nonlinear model was explored at static and temporal levels. The successful integration of these heterogeneous data sources through the stochastic gradient boosted tree approach and its improved predictability are some highlights of this work. Through the development of an innovative validation subroutine based on a permutation approach and the use of external information (i.e., operons), lack of a priori knowledge for undetected proteins was overcome. The integrative methodologies allowed for the identification of undetected proteins for Desulfovibrio vulgaris and Shewanella oneidensis for further biological exploration in laboratories towards finding functional relationships. In an effort to better understand diseases such as cancer at different developmental stages, the Microscale Life Science Center headquartered at the Arizona State University is pursuing single-cell studies by developing novel technologies. This research arranged and applied a statistical framework that tackled the following challenges: random noise, heterogeneous dynamic systems with multiple states, and understanding cell behavior within and across different Barrett's esophageal epithelial cell lines using oxygen consumption curves. These curves were characterized with good empirical fit using nonlinear models with simple structures which allowed extraction of a large number of features. Application of a supervised classification model to these features and the integration of experimental factors allowed for identification of subtle patterns among different cell types visualized through multidimensional scaling. Motivated by the challenges of analyzing real-time measurements, we further explored a unique two-dimensional representation of multiple time series using a wavelet approach which showcased promising results towards less complex approximations. Also, the benefits of external information were explored to improve the image representation.

Contributors

Agent

Created

Date Created
  • 2011

151810-Thumbnail Image.png

The application of texture analysis pipeline on MRE imaging for HCC diagnosis

Description

Hepatocellular carcinoma (HCC) is a malignant tumor and seventh most common cancer in human. Every year there is a significant rise in the number of patients suffering from HCC. Most

Hepatocellular carcinoma (HCC) is a malignant tumor and seventh most common cancer in human. Every year there is a significant rise in the number of patients suffering from HCC. Most clinical research has focused on HCC early detection so that there are high chances of patient's survival. Emerging advancements in functional and structural imaging techniques have provided the ability to detect microscopic changes in tumor micro environment and micro structure. The prime focus of this thesis is to validate the applicability of advanced imaging modality, Magnetic Resonance Elastography (MRE), for HCC diagnosis. The research was carried out on three HCC patient's data and three sets of experiments were conducted. The main focus was on quantitative aspect of MRE in conjunction with Texture Analysis, an advanced imaging processing pipeline and multi-variate analysis machine learning method for accurate HCC diagnosis. We analyzed the techniques to handle unbalanced data and evaluate the efficacy of sampling techniques. Along with this we studied different machine learning algorithms and developed models using them. Performance metrics such as Prediction Accuracy, Sensitivity and Specificity have been used for evaluation for the final developed model. We were able to identify the significant features in the dataset and also the selected classifier was robust in predicting the response class variable with high accuracy.

Contributors

Agent

Created

Date Created
  • 2013

150078-Thumbnail Image.png

The ecology of the plankton communities of two desert reservoirs

Description

In 2010, a monthly sampling regimen was established to examine ecological differences in Saguaro Lake and Lake Pleasant, two Central Arizona reservoirs. Lake Pleasant is relatively deep and clear, while

In 2010, a monthly sampling regimen was established to examine ecological differences in Saguaro Lake and Lake Pleasant, two Central Arizona reservoirs. Lake Pleasant is relatively deep and clear, while Saguaro Lake is relatively shallow and turbid. Preliminary results indicated that phytoplankton biomass was greater by an order of magnitude in Saguaro Lake, and that community structure differed. The purpose of this investigation was to determine why the reservoirs are different, and focused on physical characteristics of the water column, nutrient concentration, community structure of phytoplankton and zooplankton, and trophic cascades induced by fish populations. I formulated the following hypotheses: 1) Top-down control varies between the two reservoirs. The presence of piscivore fish in Lake Pleasant results in high grazer and low primary producer biomass through trophic cascades. Conversely, Saguaro Lake is controlled from the bottom-up. This hypothesis was tested through monthly analysis of zooplankton and phytoplankton communities in each reservoir. Analyses of the nutritional value of phytoplankton and DNA based molecular prey preference of zooplankton provided insight on trophic interactions between phytoplankton and zooplankton. Data from the Arizona Game and Fish Department (AZGFD) provided information on the fish communities of the two reservoirs. 2) Nutrient loads differ for each reservoir. Greater nutrient concentrations yield greater primary producer biomass; I hypothesize that Saguaro Lake is more eutrophic, while Lake Pleasant is more oligotrophic. Lake Pleasant had a larger zooplankton abundance and biomass, a larger piscivore fish community, and smaller phytoplankton abundance compared to Saguaro Lake. Thus, I conclude that Lake Pleasant was controlled top-down by the large piscivore fish population and Saguaro Lake was controlled from the bottom-up by the nutrient load in the reservoir. Hypothesis 2 stated that Saguaro Lake contains more nutrients than Lake Pleasant. However, Lake Pleasant had higher concentrations of dissolved nitrogen and phosphorus than Saguaro Lake. Additionally, an extended period of low dissolved N:P ratios in Saguaro Lake indicated N limitation, favoring dominance of N-fixing filamentous cyanobacteria in the phytoplankton community in that reservoir.

Contributors

Agent

Created

Date Created
  • 2011

155228-Thumbnail Image.png

Structured sparse methods for imaging genetics

Description

Imaging genetics is an emerging and promising technique that investigates how genetic variations affect brain development, structure, and function. By exploiting disorder-related neuroimaging phenotypes, this class of studies provides a

Imaging genetics is an emerging and promising technique that investigates how genetic variations affect brain development, structure, and function. By exploiting disorder-related neuroimaging phenotypes, this class of studies provides a novel direction to reveal and understand the complex genetic mechanisms. Oftentimes, imaging genetics studies are challenging due to the relatively small number of subjects but extremely high-dimensionality of both imaging data and genomic data. In this dissertation, I carry on my research on imaging genetics with particular focuses on two tasks---building predictive models between neuroimaging data and genomic data, and identifying disorder-related genetic risk factors through image-based biomarkers. To this end, I consider a suite of structured sparse methods---that can produce interpretable models and are robust to overfitting---for imaging genetics. With carefully-designed sparse-inducing regularizers, different biological priors are incorporated into learning models. More specifically, in the Allen brain image--gene expression study, I adopt an advanced sparse coding approach for image feature extraction and employ a multi-task learning approach for multi-class annotation. Moreover, I propose a label structured-based two-stage learning framework, which utilizes the hierarchical structure among labels, for multi-label annotation. In the Alzheimer's disease neuroimaging initiative (ADNI) imaging genetics study, I employ Lasso together with EDPP (enhanced dual polytope projections) screening rules to fast identify Alzheimer's disease risk SNPs. I also adopt the tree-structured group Lasso with MLFre (multi-layer feature reduction) screening rules to incorporate linkage disequilibrium information into modeling. Moreover, I propose a novel absolute fused Lasso model for ADNI imaging genetics. This method utilizes SNP spatial structure and is robust to the choice of reference alleles of genotype coding. In addition, I propose a two-level structured sparse model that incorporates gene-level networks through a graph penalty into SNP-level model construction. Lastly, I explore a convolutional neural network approach for accurate predicting Alzheimer's disease related imaging phenotypes. Experimental results on real-world imaging genetics applications demonstrate the efficiency and effectiveness of the proposed structured sparse methods.

Contributors

Agent

Created

Date Created
  • 2017