Matching Items (132)
Filtering by

Clear all filters

155963-Thumbnail Image.png
Description
Computer Vision as a eld has gone through signicant changes in the last decade.

The eld has seen tremendous success in designing learning systems with hand-crafted

features and in using representation learning to extract better features. In this dissertation

some novel approaches to representation learning and task learning are studied.

Multiple-instance learning which is

Computer Vision as a eld has gone through signicant changes in the last decade.

The eld has seen tremendous success in designing learning systems with hand-crafted

features and in using representation learning to extract better features. In this dissertation

some novel approaches to representation learning and task learning are studied.

Multiple-instance learning which is generalization of supervised learning, is one

example of task learning that is discussed. In particular, a novel non-parametric k-

NN-based multiple-instance learning is proposed, which is shown to outperform other

existing approaches. This solution is applied to a diabetic retinopathy pathology

detection problem eectively.

In cases of representation learning, generality of neural features are investigated

rst. This investigation leads to some critical understanding and results in feature

generality among datasets. The possibility of learning from a mentor network instead

of from labels is then investigated. Distillation of dark knowledge is used to eciently

mentor a small network from a pre-trained large mentor network. These studies help

in understanding representation learning with smaller and compressed networks.
ContributorsVenkatesan, Ragav (Author) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Yang, Yezhou (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2017
156084-Thumbnail Image.png
Description
The performance of most of the visual computing tasks depends on the quality of the features extracted from the raw data. Insightful feature representation increases the performance of many learning algorithms by exposing the underlying explanatory factors of the output for the unobserved input. A good representation should also handle

The performance of most of the visual computing tasks depends on the quality of the features extracted from the raw data. Insightful feature representation increases the performance of many learning algorithms by exposing the underlying explanatory factors of the output for the unobserved input. A good representation should also handle anomalies in the data such as missing samples and noisy input caused by the undesired, external factors of variation. It should also reduce the data redundancy. Over the years, many feature extraction processes have been invented to produce good representations of raw images and videos.

The feature extraction processes can be categorized into three groups. The first group contains processes that are hand-crafted for a specific task. Hand-engineering features requires the knowledge of domain experts and manual labor. However, the feature extraction process is interpretable and explainable. Next group contains the latent-feature extraction processes. While the original feature lies in a high-dimensional space, the relevant factors for a task often lie on a lower dimensional manifold. The latent-feature extraction employs hidden variables to expose the underlying data properties that cannot be directly measured from the input. Latent features seek a specific structure such as sparsity or low-rank into the derived representation through sophisticated optimization techniques. The last category is that of deep features. These are obtained by passing raw input data with minimal pre-processing through a deep network. Its parameters are computed by iteratively minimizing a task-based loss.

In this dissertation, I present four pieces of work where I create and learn suitable data representations. The first task employs hand-crafted features to perform clinically-relevant retrieval of diabetic retinopathy images. The second task uses latent features to perform content-adaptive image enhancement. The third task ranks a pair of images based on their aestheticism. The goal of the last task is to capture localized image artifacts in small datasets with patch-level labels. For both these tasks, I propose novel deep architectures and show significant improvement over the previous state-of-art approaches. A suitable combination of feature representations augmented with an appropriate learning approach can increase performance for most visual computing tasks.
ContributorsChandakkar, Parag Shridhar (Author) / Li, Baoxin (Thesis advisor) / Yang, Yezhou (Committee member) / Turaga, Pavan (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2017
156384-Thumbnail Image.png
Description
Digital imaging and image processing technologies have revolutionized the way in which

we capture, store, receive, view, utilize, and share images. In image-based applications,

through different processing stages (e.g., acquisition, compression, and transmission), images

are subjected to different types of distortions which degrade their visual quality. Image

Quality Assessment (IQA) attempts to use computational

Digital imaging and image processing technologies have revolutionized the way in which

we capture, store, receive, view, utilize, and share images. In image-based applications,

through different processing stages (e.g., acquisition, compression, and transmission), images

are subjected to different types of distortions which degrade their visual quality. Image

Quality Assessment (IQA) attempts to use computational models to automatically evaluate

and estimate the image quality in accordance with subjective evaluations. Moreover, with

the fast development of computer vision techniques, it is important in practice to extract

and understand the information contained in blurred images or regions.

The work in this dissertation focuses on reduced-reference visual quality assessment of

images and textures, as well as perceptual-based spatially-varying blur detection.

A training-free low-cost Reduced-Reference IQA (RRIQA) method is proposed. The

proposed method requires a very small number of reduced-reference (RR) features. Extensive

experiments performed on different benchmark databases demonstrate that the proposed

RRIQA method, delivers highly competitive performance as compared with the

state-of-the-art RRIQA models for both natural and texture images.

In the context of texture, the effect of texture granularity on the quality of synthesized

textures is studied. Moreover, two RR objective visual quality assessment methods that

quantify the perceived quality of synthesized textures are proposed. Performance evaluations

on two synthesized texture databases demonstrate that the proposed RR metrics outperforms

full-reference (FR), no-reference (NR), and RR state-of-the-art quality metrics in

predicting the perceived visual quality of the synthesized textures.

Last but not least, an effective approach to address the spatially-varying blur detection

problem from a single image without requiring any knowledge about the blur type, level,

or camera settings is proposed. The evaluations of the proposed approach on a diverse

sets of blurry images with different blur types, levels, and content demonstrate that the

proposed algorithm performs favorably against the state-of-the-art methods qualitatively

and quantitatively.
ContributorsGolestaneh, Seyedalireza (Author) / Karam, Lina (Thesis advisor) / Bliss, Daniel W. (Committee member) / Li, Baoxin (Committee member) / Turaga, Pavan K. (Committee member) / Arizona State University (Publisher)
Created2018
156586-Thumbnail Image.png
Description
Image Understanding is a long-established discipline in computer vision, which encompasses a body of advanced image processing techniques, that are used to locate (“where”), characterize and recognize (“what”) objects, regions, and their attributes in the image. However, the notion of “understanding” (and the goal of artificial intelligent machines) goes beyond

Image Understanding is a long-established discipline in computer vision, which encompasses a body of advanced image processing techniques, that are used to locate (“where”), characterize and recognize (“what”) objects, regions, and their attributes in the image. However, the notion of “understanding” (and the goal of artificial intelligent machines) goes beyond factual recall of the recognized components and includes reasoning and thinking beyond what can be seen (or perceived). Understanding is often evaluated by asking questions of increasing difficulty. Thus, the expected functionalities of an intelligent Image Understanding system can be expressed in terms of the functionalities that are required to answer questions about an image. Answering questions about images require primarily three components: Image Understanding, question (natural language) understanding, and reasoning based on knowledge. Any question, asking beyond what can be directly seen, requires modeling of commonsense (or background/ontological/factual) knowledge and reasoning.

Knowledge and reasoning have seen scarce use in image understanding applications. In this thesis, we demonstrate the utilities of incorporating background knowledge and using explicit reasoning in image understanding applications. We first present a comprehensive survey of the previous work that utilized background knowledge and reasoning in understanding images. This survey outlines the limited use of commonsense knowledge in high-level applications. We then present a set of vision and reasoning-based methods to solve several applications and show that these approaches benefit in terms of accuracy and interpretability from the explicit use of knowledge and reasoning. We propose novel knowledge representations of image, knowledge acquisition methods, and a new implementation of an efficient probabilistic logical reasoning engine that can utilize publicly available commonsense knowledge to solve applications such as visual question answering, image puzzles. Additionally, we identify the need for new datasets that explicitly require external commonsense knowledge to solve. We propose the new task of Image Riddles, which requires a combination of vision, and reasoning based on ontological knowledge; and we collect a sufficiently large dataset to serve as an ideal testbed for vision and reasoning research. Lastly, we propose end-to-end deep architectures that can combine vision, knowledge and reasoning modules together and achieve large performance boosts over state-of-the-art methods.
ContributorsAditya, Somak (Author) / Baral, Chitta (Thesis advisor) / Yang, Yezhou (Thesis advisor) / Aloimonos, Yiannis (Committee member) / Lee, Joohyung (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2018
156468-Thumbnail Image.png
Description
With the emergence of edge computing paradigm, many applications such as image recognition and augmented reality require to perform machine learning (ML) and artificial intelligence (AI) tasks on edge devices. Most AI and ML models are large and computational heavy, whereas edge devices are usually equipped with limited computational and

With the emergence of edge computing paradigm, many applications such as image recognition and augmented reality require to perform machine learning (ML) and artificial intelligence (AI) tasks on edge devices. Most AI and ML models are large and computational heavy, whereas edge devices are usually equipped with limited computational and storage resources. Such models can be compressed and reduced in order to be placed on edge devices, but they may loose their capability and may not generalize and perform well compared to large models. Recent works used knowledge transfer techniques to transfer information from a large network (termed teacher) to a small one (termed student) in order to improve the performance of the latter. This approach seems to be promising for learning on edge devices, but a thorough investigation on its effectiveness is lacking.

The purpose of this work is to provide an extensive study on the performance (both in terms of accuracy and convergence speed) of knowledge transfer, considering different student-teacher architectures, datasets and different techniques for transferring knowledge from teacher to student.

A good performance improvement is obtained by transferring knowledge from both the intermediate layers and last layer of the teacher to a shallower student. But other architectures and transfer techniques do not fare so well and some of them even lead to negative performance impact. For example, a smaller and shorter network, trained with knowledge transfer on Caltech 101 achieved a significant improvement of 7.36\% in the accuracy and converges 16 times faster compared to the same network trained without knowledge transfer. On the other hand, smaller network which is thinner than the teacher network performed worse with an accuracy drop of 9.48\% on Caltech 101, even with utilization of knowledge transfer.
ContributorsSistla, Ragini (Author) / Zhao, Ming (Thesis advisor, Committee member) / Li, Baoxin (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2018
156297-Thumbnail Image.png
Description
Social Computing is an area of computer science concerned with dynamics of communities and cultures, created through computer-mediated social interaction. Various social media platforms, such as social network services and microblogging, enable users to come together and create social movements expressing their opinions on diverse sets of issues, events, complaints,

Social Computing is an area of computer science concerned with dynamics of communities and cultures, created through computer-mediated social interaction. Various social media platforms, such as social network services and microblogging, enable users to come together and create social movements expressing their opinions on diverse sets of issues, events, complaints, grievances, and goals. Methods for monitoring and summarizing these types of sociopolitical trends, its leaders and followers, messages, and dynamics are needed. In this dissertation, a framework comprising of community and content-based computational methods is presented to provide insights for multilingual and noisy political social media content. First, a model is developed to predict the emergence of viral hashtag breakouts, using network features. Next, another model is developed to detect and compare individual and organizational accounts, by using a set of domain and language-independent features. The third model exposes contentious issues, driving reactionary dynamics between opposing camps. The fourth model develops community detection and visualization methods to reveal underlying dynamics and key messages that drive dynamics. The final model presents a use case methodology for detecting and monitoring foreign influence, wherein a state actor and news media under its control attempt to shift public opinion by framing information to support multiple adversarial narratives that facilitate their goals. In each case, a discussion of novel aspects and contributions of the models is presented, as well as quantitative and qualitative evaluations. An analysis of multiple conflict situations will be conducted, covering areas in the UK, Bangladesh, Libya and the Ukraine where adversarial framing lead to polarization, declines in social cohesion, social unrest, and even civil wars (e.g., Libya and the Ukraine).
ContributorsAlzahrani, Sultan (Author) / Davulcu, Hasan (Thesis advisor) / Corman, Steve R. (Committee member) / Li, Baoxin (Committee member) / Hsiao, Ihan (Committee member) / Arizona State University (Publisher)
Created2018
156219-Thumbnail Image.png
Description
Deep learning architectures have been widely explored in computer vision and have

depicted commendable performance in a variety of applications. A fundamental challenge

in training deep networks is the requirement of large amounts of labeled training

data. While gathering large quantities of unlabeled data is cheap and easy, annotating

the data is an expensive

Deep learning architectures have been widely explored in computer vision and have

depicted commendable performance in a variety of applications. A fundamental challenge

in training deep networks is the requirement of large amounts of labeled training

data. While gathering large quantities of unlabeled data is cheap and easy, annotating

the data is an expensive process in terms of time, labor and human expertise.

Thus, developing algorithms that minimize the human effort in training deep models

is of immense practical importance. Active learning algorithms automatically identify

salient and exemplar samples from large amounts of unlabeled data and can augment

maximal information to supervised learning models, thereby reducing the human annotation

effort in training machine learning models. The goal of this dissertation is to

fuse ideas from deep learning and active learning and design novel deep active learning

algorithms. The proposed learning methodologies explore diverse label spaces to

solve different computer vision applications. Three major contributions have emerged

from this work; (i) a deep active framework for multi-class image classication, (ii)

a deep active model with and without label correlation for multi-label image classi-

cation and (iii) a deep active paradigm for regression. Extensive empirical studies

on a variety of multi-class, multi-label and regression vision datasets corroborate the

potential of the proposed methods for real-world applications. Additional contributions

include: (i) a multimodal emotion database consisting of recordings of facial

expressions, body gestures, vocal expressions and physiological signals of actors enacting

various emotions, (ii) four multimodal deep belief network models and (iii)

an in-depth analysis of the effect of transfer of multimodal emotion features between

source and target networks on classification accuracy and training time. These related

contributions help comprehend the challenges involved in training deep learning

models and motivate the main goal of this dissertation.
ContributorsRanganathan, Hiranmayi (Author) / Sethuraman, Panchanathan (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Li, Baoxin (Committee member) / Chakraborty, Shayok (Committee member) / Arizona State University (Publisher)
Created2018
156711-Thumbnail Image.png
Description
Social media refers computer-based technology that allows the sharing of information and building the virtual networks and communities. With the development of internet based services and applications, user can engage with social media via computer and smart mobile devices. In recent years, social media has taken the form

Social media refers computer-based technology that allows the sharing of information and building the virtual networks and communities. With the development of internet based services and applications, user can engage with social media via computer and smart mobile devices. In recent years, social media has taken the form of different activities such as social network, business network, text sharing, photo sharing, blogging, etc. With the increasing popularity of social media, it has accumulated a large amount of data which enables understanding the human behavior possible. Compared with traditional survey based methods, the analysis of social media provides us a golden opportunity to understand individuals at scale and in turn allows us to design better services that can tailor to individuals’ needs. From this perspective, we can view social media as sensors, which provides online signals from a virtual world that has no geographical boundaries for the real world individual's activity.

One of the key features for social media is social, where social media users actively interact to each via generating content and expressing the opinions, such as post and comment in Facebook. As a result, sentiment analysis, which refers a computational model to identify, extract or characterize subjective information expressed in a given piece of text, has successfully employs user signals and brings many real world applications in different domains such as e-commerce, politics, marketing, etc. The goal of sentiment analysis is to classify a user’s attitude towards various topics into positive, negative or neutral categories based on textual data in social media. However, recently, there is an increasing number of people start to use photos to express their daily life on social media platforms like Flickr and Instagram. Therefore, analyzing the sentiment from visual data is poise to have great improvement for user understanding.

In this dissertation, I study the problem of understanding human sentiments from large scale collection of social images based on both image features and contextual social network features. We show that neither

visual features nor the textual features are by themselves sufficient for accurate sentiment prediction. Therefore, we provide a way of using both of them, and formulate sentiment prediction problem in two scenarios: supervised and unsupervised. We first show that the proposed framework has flexibility to incorporate multiple modalities of information and has the capability to learn from heterogeneous features jointly with sufficient training data. Secondly, we observe that negative sentiment may related to human mental health issues. Based on this observation, we aim to understand the negative social media posts, especially the post related to depression e.g., self-harm content. Our analysis, the first of its kind, reveals a number of important findings. Thirdly, we extend the proposed sentiment prediction task to a general multi-label visual recognition task to demonstrate the methodology flexibility behind our sentiment analysis model.
ContributorsWang, Yilin (Author) / Li, Baoxin (Thesis advisor) / Liu, Huan (Committee member) / Tong, Hanghang (Committee member) / Chang, Yi (Committee member) / Arizona State University (Publisher)
Created2018
156747-Thumbnail Image.png
Description
Mixture of experts is a machine learning ensemble approach that consists of individual models that are trained to be ``experts'' on subsets of the data, and a gating network that provides weights to output a combination of the expert predictions. Mixture of experts models do not currently see wide use

Mixture of experts is a machine learning ensemble approach that consists of individual models that are trained to be ``experts'' on subsets of the data, and a gating network that provides weights to output a combination of the expert predictions. Mixture of experts models do not currently see wide use due to difficulty in training diverse experts and high computational requirements. This work presents modifications of the mixture of experts formulation that use domain knowledge to improve training, and incorporate parameter sharing among experts to reduce computational requirements.

First, this work presents an application of mixture of experts models for quality robust visual recognition. First it is shown that human subjects outperform deep neural networks on classification of distorted images, and then propose a model, MixQualNet, that is more robust to distortions. The proposed model consists of ``experts'' that are trained on a particular type of image distortion. The final output of the model is a weighted sum of the expert models, where the weights are determined by a separate gating network. The proposed model also incorporates weight sharing to reduce the number of parameters, as well as increase performance.



Second, an application of mixture of experts to predict visual saliency is presented. A computational saliency model attempts to predict where humans will look in an image. In the proposed model, each expert network is trained to predict saliency for a set of closely related images. The final saliency map is computed as a weighted mixture of the expert networks' outputs, with weights determined by a separate gating network. The proposed model achieves better performance than several other visual saliency models and a baseline non-mixture model.

Finally, this work introduces a saliency model that is a weighted mixture of models trained for different levels of saliency. Levels of saliency include high saliency, which corresponds to regions where almost all subjects look, and low saliency, which corresponds to regions where some, but not all subjects look. The weighted mixture shows improved performance compared with baseline models because of the diversity of the individual model predictions.
ContributorsDodge, Samuel Fuller (Author) / Karam, Lina (Thesis advisor) / Jayasuriya, Suren (Committee member) / Li, Baoxin (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2018
156887-Thumbnail Image.png
Description
Computer vision technology automatically extracts high level, meaningful information from visual data such as images or videos, and the object recognition and detection algorithms are essential in most computer vision applications. In this dissertation, we focus on developing algorithms used for real life computer vision applications, presenting innovative algorithms for

Computer vision technology automatically extracts high level, meaningful information from visual data such as images or videos, and the object recognition and detection algorithms are essential in most computer vision applications. In this dissertation, we focus on developing algorithms used for real life computer vision applications, presenting innovative algorithms for object segmentation and feature extraction for objects and actions recognition in video data, and sparse feature selection algorithms for medical image analysis, as well as automated feature extraction using convolutional neural network for blood cancer grading.

To detect and classify objects in video, the objects have to be separated from the background, and then the discriminant features are extracted from the region of interest before feeding to a classifier. Effective object segmentation and feature extraction are often application specific, and posing major challenges for object detection and classification tasks. In this dissertation, we address effective object flow based ROI generation algorithm for segmenting moving objects in video data, which can be applied in surveillance and self driving vehicle areas. Optical flow can also be used as features in human action recognition algorithm, and we present using optical flow feature in pre-trained convolutional neural network to improve performance of human action recognition algorithms. Both algorithms outperform the state-of-the-arts at their time.

Medical images and videos pose unique challenges for image understanding mainly due to the fact that the tissues and cells are often irregularly shaped, colored, and textured, and hand selecting most discriminant features is often difficult, thus an automated feature selection method is desired. Sparse learning is a technique to extract the most discriminant and representative features from raw visual data. However, sparse learning with \textit{L1} regularization only takes the sparsity in feature dimension into consideration; we improve the algorithm so it selects the type of features as well; less important or noisy feature types are entirely removed from the feature set. We demonstrate this algorithm to analyze the endoscopy images to detect unhealthy abnormalities in esophagus and stomach, such as ulcer and cancer. Besides sparsity constraint, other application specific constraints and prior knowledge may also need to be incorporated in the loss function in sparse learning to obtain the desired results. We demonstrate how to incorporate similar-inhibition constraint, gaze and attention prior in sparse dictionary selection for gastroscopic video summarization that enable intelligent key frame extraction from gastroscopic video data. With recent advancement in multi-layer neural networks, the automatic end-to-end feature learning becomes feasible. Convolutional neural network mimics the mammal visual cortex and can extract most discriminant features automatically from training samples. We present using convolutinal neural network with hierarchical classifier to grade the severity of Follicular Lymphoma, a type of blood cancer, and it reaches 91\% accuracy, on par with analysis by expert pathologists.

Developing real world computer vision applications is more than just developing core vision algorithms to extract and understand information from visual data; it is also subject to many practical requirements and constraints, such as hardware and computing infrastructure, cost, robustness to lighting changes and deformation, ease of use and deployment, etc.The general processing pipeline and system architecture for the computer vision based applications share many similar design principles and architecture. We developed common processing components and a generic framework for computer vision application, and a versatile scale adaptive template matching algorithm for object detection. We demonstrate the design principle and best practices by developing and deploying a complete computer vision application in real life, building a multi-channel water level monitoring system, where the techniques and design methodology can be generalized to other real life applications. The general software engineering principles, such as modularity, abstraction, robust to requirement change, generality, etc., are all demonstrated in this research.
ContributorsCao, Jun (Author) / Li, Baoxin (Thesis advisor) / Liu, Huan (Committee member) / Zhang, Yu (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2018