Matching Items (26)

136525-Thumbnail Image.png

A Modeling System to Understand the Design and Performance of a Two Spool Gas Turbine Engine

Description

The purpose of my Honors Thesis was to generate a tool that could be implemented by Aerospace students at Arizona State University. This tool was created using MatLab which is the current program students are using. The modeling system that

The purpose of my Honors Thesis was to generate a tool that could be implemented by Aerospace students at Arizona State University. This tool was created using MatLab which is the current program students are using. The modeling system that was generated goes step-by-step through the flow of a two spool gas turbine engine. The code was then compared to an ideal case engine with predictable values. It was found to have less than a 3 percent error for these parameters, which included optimal net work produced, optimal overall pressure ratio, and maximum pressure ratio. The modeling system was then run through a parametric analysis. In the first case, the bypass ratio was set to 0 and the freestream Mach number was set to 0. The second case was with a bypass ratio of 0 and fresstream Mach number of 0.85. The third case was with a bypass ratio of 5 and freestream Mach number of 0. The fourth case was with a bypass ratio of 5 and fresstream Mach number of 0.85. Each of these cases was run at various overall pressure ratios and maximum Temperatures of 1500 K, 1600 K and 1700 K. The results modeled the behavior that was expected. As the freestream Mach number was increased, the thrust decreased and the thrust specific fuel consumption increased, corresponding to an increase in total pressure at the combustor inlet. It was also found that the thrust was increased and the thrust specific fuel consumption decreased as the bypass ratio was increased. These results also make sense as there is less airflow passing through the engine core. Finally the engine was compared to two real engines. Both of which are General Electric G6 series engines. For the 80C2A3 engine, the percent difference between thrust and thrust specific fuel consumption was less than five percent. For the 50B, the thrust was below a two percent difference, but the thrust specific fuel consumption clearly provided inaccurate results. This could be caused by the lack of inputs provided by General Electric. The amount of fuel injected is largely dependent on the maximum temperature which is not available to the public. Overall, the code produces comparable results to real engines and can display how isolating and modifying a certain parameter effects engine performance.

Contributors

Agent

Created

Date Created
2015-05

152067-Thumbnail Image.png

Theoretical prediction of Sauter mean diameter for pressure-swirl atomizers through integral conservation methods

Description

A new theoretical model was developed utilizing energy conservation methods in order to determine the fully-atomized cross-sectional Sauter mean diameters of pressure-swirl atomizers. A detailed boundary-layer assessment led to the development of a new viscous dissipation model for droplets in

A new theoretical model was developed utilizing energy conservation methods in order to determine the fully-atomized cross-sectional Sauter mean diameters of pressure-swirl atomizers. A detailed boundary-layer assessment led to the development of a new viscous dissipation model for droplets in the spray. Integral momentum methods were also used to determine the complete velocity history of the droplets and entrained gas in the spray. The model was extensively validated through comparison with experiment and it was found that the model could predict the correct droplet size with high accuracy for a wide range of operating conditions. Based on detailed analysis, it was found that the energy model has a tendency to overestimate the droplet diameters for very low injection velocities, Weber numbers, and cone angles. A full parametric study was also performed in order to unveil some underlying behavior of pressure-swirl atomizers. It was found that at high injection velocities, the kinetic energy in the spray is significantly larger than the surface tension energy, therefore, efforts into improving atomization quality by changing the liquid's surface tension may not be the most productive. From the parametric studies it was also shown how the Sauter mean diameter and entrained velocities vary with increasing ambient gas density. Overall, the present energy model has the potential to provide quick and reasonably accurate solutions for a wide range of operating conditions enabling the user to determine how different injection parameters affect the spray quality.

Contributors

Agent

Created

Date Created
2013

151914-Thumbnail Image.png

Small-scale hybrid rocket test stand & characterization of swirl injectors

Description

Derived from the necessity to increase testing capabilities of hybrid rocket motor (HRM) propulsion systems for Daedalus Astronautics at Arizona State University, a small-scale motor and test stand were designed and developed to characterize all components of the system. The

Derived from the necessity to increase testing capabilities of hybrid rocket motor (HRM) propulsion systems for Daedalus Astronautics at Arizona State University, a small-scale motor and test stand were designed and developed to characterize all components of the system. The motor is designed for simple integration and setup, such that both the forward-end enclosure and end cap can be easily removed for rapid integration of components during testing. Each of the components of the motor is removable allowing for a broad range of testing capabilities. While examining injectors and their potential it is thought ideal to obtain the highest regression rates and overall motor performance possible. The oxidizer and fuel are N2O and hydroxyl-terminated polybutadiene (HTPB), respectively, due to previous experience and simplicity. The injector designs, selected for the same reasons, are designed such that they vary only in the swirl angle. This system provides the platform for characterizing the effects of varying said swirl angle on HRM performance.

Contributors

Agent

Created

Date Created
2013

153834-Thumbnail Image.png

Optimization of complex thermal-fluid processes

Description

First, in a large-scale structure, a 3-D CFD model was built to simulate flow and temperature distributions. The flow patterns and temperature distributions are characterized and validated through spot measurements. The detailed understanding of them then allows for optimization of

First, in a large-scale structure, a 3-D CFD model was built to simulate flow and temperature distributions. The flow patterns and temperature distributions are characterized and validated through spot measurements. The detailed understanding of them then allows for optimization of the HVAC configuration because identification of the problematic flow patterns and temperature mis-distributions leads to some corrective measures. Second, an appropriate form of the viscous dissipation term in the integral form of the conservation equation was considered, and the effects of momentum terms on the computed drop size in pressure-atomized sprays were examined. The Sauter mean diameter (SMD) calculated in this manner agrees well with experimental data of the drop velocities and sizes. Using the suggested equation with the revised treatment of liquid momentum setup, injection parameters can be directly input to the system of equations. Thus, this approach is capable of incorporating the effects of injection parameters for further considerations of the drop and velocity distributions under a wide range of spray geometry and injection conditions. Lastly, groundwater level estimation was investigated using compressed sensing (CS). To satisfy a general property of CS, a random measurement matrix was used, the groundwater network was constructed, and finally the l-1 optimization was run. Through several validation tests, correct estimation of groundwater level by CS was shown. Using this setup, decreasing trends in groundwater level in the southwestern US was shown. The suggested method is effective in that the total measurements of registered wells can be reduced down by approximately 42 %, sparse data can be visualized and a possible approach for groundwater management during extreme weather changes, e.g. in California, was demonstrated.

Contributors

Agent

Created

Date Created
2015

151772-Thumbnail Image.png

Experimental study of pressure and main gas ingestion distributions in a model rotor-stator disk cavity

Description

Ingestion of high temperature mainstream gas into the rotor-stator cavities of a gas turbine is one of the major problems faced by the turbine designers. The ingested gas heats up rotor disks and induces higher thermal stresses on them, giving

Ingestion of high temperature mainstream gas into the rotor-stator cavities of a gas turbine is one of the major problems faced by the turbine designers. The ingested gas heats up rotor disks and induces higher thermal stresses on them, giving rise to durability concern. Ingestion is usually reduced by installing seals on the rotor and stator rims and by purging the disk cavity by secondary air bled from the compressor discharge. The geometry of the rim seals and the secondary air flow rate, together, influence the amount of gas that gets ingested into the cavities. Since the amount of secondary air bled off has a negative effect on the gas turbine thermal efficiency, one goal is to use the least possible amount of secondary air. This requires a good understanding of the flow and ingestion fields within a disk cavity. In the present study, the mainstream gas ingestion phenomenon has been experimentally studied in a model single-stage axial flow gas turbine. The turbine stage featured vanes and blades, and rim seals on both the rotor and stator. Additionally, the disk cavity contained a labyrinth seal radially inboard which effectively divided the cavity into a rim cavity and an inner cavity. Time-average static pressure measurements were obtained at various radial positions within the disk cavity, and in the mainstream gas path at three axial locations at the outer shroud spread circumferentially over two vane pitches. The time-average static pressure in the main gas path exhibited a periodic asymmetry following the vane pitch whose amplitude diminished with increasing distance from the vane trailing edge. The static pressure distribution increased with the secondary air flow rate within the inner cavity but was found to be almost independent of it in the rim cavity. Tracer gas (CO2) concentration measurements were conducted to determine the sealing effectiveness of the rim seals against main gas ingestion. For the rim cavity, the sealing effectiveness increased with the secondary air flow rate. Within the inner cavity however, this trend reversed -this may have been due to the presence of rotating low-pressure flow structures inboard of the labyrinth seal.

Contributors

Agent

Created

Date Created
2013

151645-Thumbnail Image.png

Turbine inlet analysis of injected water droplet behavior

Description

Gas turbines have become widely used in the generation of power for cities. They are used all over the world and must operate under a wide variety of ambient conditions. Every turbine has a temperature at which it operates at

Gas turbines have become widely used in the generation of power for cities. They are used all over the world and must operate under a wide variety of ambient conditions. Every turbine has a temperature at which it operates at peak capacity. In order to attain this temperature in the hotter months various cooling methods are used such as refrigeration inlet cooling systems, evaporative methods, and thermal energy storage systems. One of the more widely used is the evaporative systems because it is one of the safest and easiest to utilize method. However, the behavior of water droplets within the inlet to the turbine has not been extensively studied or documented. It is important to understand how the droplets behave within the inlet so that water droplets above a critical diameter will not enter the compressor and cause damage to the compressor blades. In order to do this a FLUENT simulation was constructed in order to determine the behavior of the water droplets and if any droplets remain at the exit of the inlet, along with their size. In order to do this several engineering drawings were obtained from SRP and studies in order to obtain the correct dimensions. Then the simulation was set up using data obtained from SRP and Parker-Hannifin, the maker of the spray nozzles. Then several sets of simulations were run in order to see how the water droplets behaved under various conditions. These results were then analyzed and quantified so that they could be easily understood. The results showed that the possible damage to the compressor increased with increasing temperature at a constant relative humidity. This is due in part to the fact that in order to keep a constant relative humidity at varying temperatures the mass fraction of water vapor in the air must be changed. As temperature increases the water vapor mass fraction must increase in order to maintain a constant relative humidity. This in turn makes it slightly increases the evaporation time of the water droplets. This will then lead to more droplets exiting the inlet and at larger diameters.

Contributors

Agent

Created

Date Created
2013

149965-Thumbnail Image.png

Image processing an experimental analysis of image processing in fluidic process

Description

Image processing in canals, rivers and other bodies of water has been a very important concern. This research using Image Processing was performed to obtain a photographic evidence of the data of the site which helps in monitoring the conditions

Image processing in canals, rivers and other bodies of water has been a very important concern. This research using Image Processing was performed to obtain a photographic evidence of the data of the site which helps in monitoring the conditions of the water body and the surroundings. Images are captured using a digital camera and the images are stored onto a datalogger, these images are retrieved using a cellular/ satellite modem. A MATLAB program was designed to obtain the level of water by just entering the file name into to the program, a curve fit model was created to determine the contrast parameters. The contrast parameters were obtained using the data obtained from the gray scale image mainly the mean and variance of the intensity values. The enhanced images are used to determine the level of water by taking pixel intensity plots along the region of interest. The level of water obtained is accurate to less than 2% of the actual level of water observed from the image. High speed imaging in micro channels have various application in industrial field, medical field etc. In medical field it is tested by using blood samples. The experimental procedure proposed determines the flow duration and the defects observed in these channel using a fluid introduced into the micro channel the fluid being water based dye and whole milk. The viscosity of the fluid shows different types of flow patterns and defects in the micro channel. The defects observed vary from a small effect to the flow pattern to an extreme defect in the channel such as obstruction of flow or deformation in the channel. The sample needs to be further analyzed by SEM to get a better insight on the defects.

Contributors

Agent

Created

Date Created
2011

150194-Thumbnail Image.png

Pyrogel synthesis: an experimental analysis and simulation

Description

Processed pyro-gel contains castor oil with solid component of boehmite (Al-OOH). The pyro-gel is synthesized by heat to convert boehmite to gamma-Al2O3 and to a certain extent alpha-Al2O3 nano-particles and castor oil into carbon residue. The effect of heat on

Processed pyro-gel contains castor oil with solid component of boehmite (Al-OOH). The pyro-gel is synthesized by heat to convert boehmite to gamma-Al2O3 and to a certain extent alpha-Al2O3 nano-particles and castor oil into carbon residue. The effect of heat on pyro-gel is analyzed in a series of experiments using two burning chambers with the initial temperature as the main factor. The obtained temperature distribution profiles are studied and it is observed that the gel behaves very close to the theoretical prediction under heat. The carbon residue with Al2O3 is then processed for twelve hours and then analyzed to obtain the pore distribution of the Al2O3 nano-particles and the relation between the pore volume and the pre-heat temperature is analyzed. The obtained pore distribution shows the pore volume of Al2O3 nano-particles has direct relation to the pre-heat temperature. The experimental process involving the cylindrical reactor is simulated by using a finite rate chemistry eddy-dissipation model in a non-premixed and a porous mesh. The temperature distribution profile of the processed gel for both the meshes is obtained and a comparison is done with the data obtained in the experimental analysis. The temperature distribution obtained from the simulations show they follow a very similar profile to the temperature distribution obtained from experimental analysis, thus confirming the accuracy of both the models. The variation in numerical values between the experimental and simulation analysis is discussed. A physical model is proposed to determine the pore formation based on the temperature distribution obtained from experimental analysis and simulation.

Contributors

Agent

Created

Date Created
2010

150473-Thumbnail Image.png

Modeling and characterization of ammonia injection and catalytic reduction in Kyrene Unit-7 HRSG

Description

ABSTRACT The heat recovery steam generator (HRSG) is a key component of Combined Cycle Power Plants (CCPP). The exhaust (flue gas) from the CCPP gas turbine flows through the HRSG − this gas typically contains a high concentration of NO

ABSTRACT The heat recovery steam generator (HRSG) is a key component of Combined Cycle Power Plants (CCPP). The exhaust (flue gas) from the CCPP gas turbine flows through the HRSG − this gas typically contains a high concentration of NO and cannot be discharged directly to the atmosphere because of environmental restrictions. In the HRSG, one method of reducing the flue gas NO concentration is to inject ammonia into the gas at a plane upstream of the Selective Catalytic Reduction (SCR) unit through an injection grid (AIG); the SCR is where the NO is reduced to N2 and H2O. The amount and spatial distribution of the injected ammonia are key considerations for NO reduction while using the minimum possible amount of ammonia. This work had three objectives. First, a flow network model of the Ammonia Flow Control Unit (AFCU) was to be developed to calculate the quantity of ammonia released into the flue gas from each AIG perforation. Second, CFD simulation of the flue gas flow was to be performed to obtain the velocity, temperature, and species concentration fields in the gas upstream and downstream of the SCR. Finally, performance characteristics of the ammonia injection system were to be evaluated. All three objectives were reached. The AFCU was modeled using JAVA - with a graphical user interface provided for the user. The commercial software Fluent was used for CFD simulation. To evaluate the efficacy of the ammonia injection system in reducing the flue gas NO concentration, the twelve butterfly valves in the AFCU ammonia delivery piping (risers) were throttled by various degrees in the model and the NO concentration distribution computed for each operational scenario. When the valves were kept fully open, it was found that it led to a more uniform reduction in NO concentration compared to throttling the valves such that the riser flows were equal. Additionally, the SCR catalyst was consumed somewhat more uniformly, and ammonia slip (ammonia not consumed in reaction) was found lower. The ammonia use could be decreased by 10 percent while maintaining the NO concentration limit in the flue gas exhausting into the atmosphere.

Contributors

Agent

Created

Date Created
2011

150410-Thumbnail Image.png

An accessible architecture for affordable access to space

Description

A design methodology for a new breed of launch vehicle capable of lofting small satellites to orbit is discussed. The growing need for such a rocket is great: the United States has no capabilities in place to quickly launch and

A design methodology for a new breed of launch vehicle capable of lofting small satellites to orbit is discussed. The growing need for such a rocket is great: the United States has no capabilities in place to quickly launch and reconstitute satellite constellations. A loss of just one satellite, natural or induced, could significantly degrade or entirely eliminate critical space-based assets which would need to be quickly replaced. Furthermore a rocket capable of meeting the requirements for operationally responsive space missions would be an ideal launch platform for small commercial satellites. The proposed architecture to alleviate this lack of an affordable dedicated small-satellite launch vehicle relies upon a combination of expendable medium-range military surplus solid rocket motor assets. The dissertation discusses in detail the current operational capabilities of these military boosters and provides an outline for necessary refurbishments required to successfully place a small payload in orbit. A custom 3DOF trajectory script is used to evaluate the performance of these designs. Concurrently, a parametric cost-mass-performance response surface methodology is employed as an optimization tool to minimize life cycle costs of the proposed vehicles. This optimization scheme is centered on reducing life cycle costs per payload mass delivered rather than raw performance increases. Lastly, a novel upper-stage engine configuration using Hydroxlammonium Nitrate (HAN) is introduced and experimentally static test fired to illustrate the inherent simplicity and high performance of this high density, nontoxic propellant. The motor was operated in both pulse and small duration tests using a newly developed proprietary mixture that is hypergolic with HAN upon contact. This new propellant is demonstrated as a favorable replacement for current space vehicles relying on the heritage use of hydrazine. The end result is a preliminary design of a vehicle built from demilitarized booster assets that complements, rather than replaces, traditional space launch vehicles. This dissertation proves that such capabilities exist and more importantly that the resulting architecture can serve as a viable platform for immediate and affordable access to low Earth orbit.

Contributors

Agent

Created

Date Created
2011