Matching Items (30)

137309-Thumbnail Image.png

Security Analysis of x86 Processor Microcode

Description

Modern computer processors contain an embedded firmware known as microcode that controls decode and execution of x86 instructions. Although proprietary and relatively obscure, this microcode can be modified using updates

Modern computer processors contain an embedded firmware known as microcode that controls decode and execution of x86 instructions. Although proprietary and relatively obscure, this microcode can be modified using updates released by hardware manufacturers to correct processor logic flaws (errata). At the same time, a malicious microcode update could compromise a processor by implementing new malicious instructions or altering the functionality of existing instructions, including processor-accelerated virtualization or cryptographic primitives. Not only is this attack vector capable of subverting all software-enforced security policies and access controls, but it also leaves behind no postmortem forensic evidence since the write-only patch memory is cleared upon system reset. Although supervisor privileges (ring zero) are required to update processor microcode, this attack cannot be easily mitigated due to the implementation of microcode update functionality within processor silicon. In this paper, we reveal the microarchitecture and mechanism of microcode updates, present a security analysis of this attack vector, and provide some mitigation suggestions.

Contributors

Created

Date Created
  • 2014-05

155191-Thumbnail Image.png

Big data analysis of bacterial inhibitors in parallelized cellomics: a machine learning approach

Description

Identifying chemical compounds that inhibit bacterial infection has recently gained a considerable amount of attention given the increased number of highly resistant bacteria and the serious health threat it poses

Identifying chemical compounds that inhibit bacterial infection has recently gained a considerable amount of attention given the increased number of highly resistant bacteria and the serious health threat it poses around the world. With the development of automated microscopy and image analysis systems, the process of identifying novel therapeutic drugs can generate an immense amount of data - easily reaching terabytes worth of information. Despite increasing the vast amount of data that is currently generated, traditional analytical methods have not increased the overall success rate of identifying active chemical compounds that eventually become novel therapeutic drugs. Moreover, multispectral imaging has become ubiquitous in drug discovery due to its ability to provide valuable information on cellular and sub-cellular processes using florescent reagents. These reagents are often costly and toxic to cells over an extended period of time causing limitations in experimental design. Thus, there is a significant need to develop a more efficient process of identifying active chemical compounds.

This dissertation introduces novel machine learning methods based on parallelized cellomics to analyze interactions between cells, bacteria, and chemical compounds while reducing the use of fluorescent reagents. Machine learning analysis using image-based high-content screening (HCS) data is compartmentalized into three primary components: (1) \textit{Image Analytics}, (2) \textit{Phenotypic Analytics}, and (3) \textit{Compound Analytics}. A novel software analytics tool called the Insights project is also introduced. The Insights project fully incorporates distributed processing, high performance computing, and database management that can rapidly and effectively utilize and store massive amounts of data generated using HCS biological assessments (bioassays). It is ideally suited for parallelized cellomics in high dimensional space.

Results demonstrate that a parallelized cellomics approach increases the quality of a bioassay while vastly decreasing the need for control data. The reduction in control data leads to less fluorescent reagent consumption. Furthermore, a novel proposed method that uses single-cell data points is proven to identify known active chemical compounds with a high degree of accuracy, despite traditional quality control measurements indicating the bioassay to be of poor quality. This, ultimately, decreases the time and resources needed in optimizing bioassays while still accurately identifying active compounds.

Contributors

Agent

Created

Date Created
  • 2016

151173-Thumbnail Image.png

A high level language for human robot interaction

Description

While developing autonomous intelligent robots has been the goal of many research programs, a more practical application involving intelligent robots is the formation of teams consisting of both humans and

While developing autonomous intelligent robots has been the goal of many research programs, a more practical application involving intelligent robots is the formation of teams consisting of both humans and robots. An example of such an application is search and rescue operations where robots commanded by humans are sent to environments too dangerous for humans. For such human-robot interaction, natural language is considered a good communication medium as it allows humans with less training about the robot's internal language to be able to command and interact with the robot. However, any natural language communication from the human needs to be translated to a formal language that the robot can understand. Similarly, before the robot can communicate (in natural language) with the human, it needs to formulate its communique in some formal language which then gets translated into natural language. In this paper, I develop a high level language for communication between humans and robots and demonstrate various aspects through a robotics simulation. These language constructs borrow some ideas from action execution languages and are grounded with respect to simulated human-robot interaction transcripts.

Contributors

Agent

Created

Date Created
  • 2012

157780-Thumbnail Image.png

Knowledge Representation, Reasoning and Learning for Non-Extractive Reading Comprehension

Description

While in recent years deep learning (DL) based approaches have been the popular approach in developing end-to-end question answering (QA) systems, such systems lack several desired properties, such as the

While in recent years deep learning (DL) based approaches have been the popular approach in developing end-to-end question answering (QA) systems, such systems lack several desired properties, such as the ability to do sophisticated reasoning with knowledge, the ability to learn using less resources and interpretability. In this thesis, I explore solutions that aim to address these drawbacks.

Towards this goal, I work with a specific family of reading comprehension tasks, normally referred to as the Non-Extractive Reading Comprehension (NRC), where the given passage does not contain enough information and to correctly answer sophisticated reasoning and ``additional knowledge" is required. I have organized the NRC tasks into three categories. Here I present my solutions to the first two categories and some preliminary results on the third category.

Category 1 NRC tasks refer to the scenarios where the required ``additional knowledge" is missing but there exists a decent natural language parser. For these tasks, I learn the missing ``additional knowledge" with the help of the parser and a novel inductive logic programming. The learned knowledge is then used to answer new questions. Experiments on three NRC tasks show that this approach along with providing an interpretable solution achieves better or comparable accuracy to that of the state-of-the-art DL based approaches.

The category 2 NRC tasks refer to the alternate scenario where the ``additional knowledge" is available but no natural language parser works well for the sentences of the target domain. To deal with these tasks, I present a novel hybrid reasoning approach which combines symbolic and natural language inference (neural reasoning) and ultimately allows symbolic modules to reason over raw text without requiring any translation. Experiments on two NRC tasks shows its effectiveness.

The category 3 neither provide the ``missing knowledge" and nor a good parser. This thesis does not provide an interpretable solution for this category but some preliminary results and analysis of a pure DL based approach. Nonetheless, the thesis shows beyond the world of pure DL based approaches, there are tools that can offer interpretable solutions for challenging tasks without using much resource and possibly with better accuracy.

Contributors

Agent

Created

Date Created
  • 2019

149373-Thumbnail Image.png

An inverse lambda calculus algorithm for natural language processing

Description

Natural Language Processing is a subject that combines computer science and linguistics, aiming to provide computers with the ability to understand natural language and to develop a more intuitive human-computer

Natural Language Processing is a subject that combines computer science and linguistics, aiming to provide computers with the ability to understand natural language and to develop a more intuitive human-computer interaction. The research community has developed ways to translate natural language to mathematical formalisms. It has not yet been shown, however, how to automatically translate different kinds of knowledge in English to distinct formal languages. Most of the recent work presents the problem that the translation method aims to a specific formal language or is hard to generalize. In this research, I take a first step to overcome this difficulty and present two algorithms which take as input two lambda-calculus expressions G and H and compute a lambda-calculus expression F. The expression F returned by the first algorithm satisfies F@G=H and, in the case of the second algorithm, we obtain G@F=H. The lambda expressions represent the meanings of words and sentences. For each formal language that one desires to use with the algorithms, the language must be defined in terms of lambda calculus. Also, some additional concepts must be included. After doing this, given a sentence, its representation and knowing the representation of several words in the sentence, the algorithms can be used to obtain the representation of the other words in that sentence. In this work, I define two languages and show examples of their use with the algorithms. The algorithms are illustrated along with soundness and completeness proofs, the latter with respect to typed lambda-calculus formulas up to the second order. These algorithms are a core part of a natural language semantics system that translates sentences from English to formulas in different formal languages.

Contributors

Agent

Created

Date Created
  • 2010

155536-Thumbnail Image.png

Representing Hybrid Transition Systems in an Action Language Modulo ODEs

Description

Several physical systems exist in the real world that involve continuous as well as discrete changes. These range from natural dynamic systems like the system of a bouncing ball to

Several physical systems exist in the real world that involve continuous as well as discrete changes. These range from natural dynamic systems like the system of a bouncing ball to robotic dynamic systems such as planning the motion of a robot across obstacles. The key aspects of effectively describing such dynamic systems is to be able to plan and verify the evolution of the continuous components of the system while simultaneously maintaining critical constraints. Developing a framework that can effectively represent and find solutions to such physical systems prove to be highly advantageous. Both hybrid automata and action languages are formal models for describing the evolution of dynamic systems. The action language C+ is a rich and expressive language framework to formalize physical systems, but can be used only with physical systems in the discrete domain and is limited in its support of continuous domain components of such systems. Hybrid Automata is a well established formalism used to represent such complex physical systems at a theoretical level, however it is not expressive enough to capture the complex relations between the components of the system the way C+ does.

This thesis will focus on establishing a formal relationship between these two formalisms by showing how to succinctly represent Hybrid Automata in an action language which in turn is defined as a high-level notation for answer set programming modulo theories (ASPMT) --- an extension of answer set programs in the first-order level. Furthermore, this encoding framework is shown to be more effective and expressive than Hybrid Automata by highlighting its ability in allowing states of a hybrid transition system to be defined by complex relations among components that would otherwise be abstracted away in Hybrid Automata. The framework is further realized in the implementation of the system CPLUS2ASPMT, which takes advantage of state of the art ODE(Ordinary Differential Equations) based SMT solver dReal to provide support for ODE based evolution of continuous components of a dynamic system.

Contributors

Agent

Created

Date Created
  • 2017

154047-Thumbnail Image.png

Answering deep queries specified in natural language with respect to a frame based knowledge base and developing related natural language understanding components

Description

Question Answering has been under active research for decades, but it has recently taken the spotlight following IBM Watson's success in Jeopardy! and digital assistants such as Apple's Siri, Google

Question Answering has been under active research for decades, but it has recently taken the spotlight following IBM Watson's success in Jeopardy! and digital assistants such as Apple's Siri, Google Now, and Microsoft Cortana through every smart-phone and browser. However, most of the research in Question Answering aims at factual questions rather than deep ones such as ``How'' and ``Why'' questions.

In this dissertation, I suggest a different approach in tackling this problem. We believe that the answers of deep questions need to be formally defined before found.

Because these answers must be defined based on something, it is better to be more structural in natural language text; I define Knowledge Description Graphs (KDGs), a graphical structure containing information about events, entities, and classes. We then propose formulations and algorithms to construct KDGs from a frame-based knowledge base, define the answers of various ``How'' and ``Why'' questions with respect to KDGs, and suggest how to obtain the answers from KDGs using Answer Set Programming. Moreover, I discuss how to derive missing information in constructing KDGs when the knowledge base is under-specified and how to answer many factual question types with respect to the knowledge base.

After having the answers of various questions with respect to a knowledge base, I extend our research to use natural language text in specifying deep questions and knowledge base, generate natural language text from those specification. Toward these goals, I developed NL2KR, a system which helps in translating natural language to formal language. I show NL2KR's use in translating ``How'' and ``Why'' questions, and generating simple natural language sentences from natural language KDG specification. Finally, I discuss applications of the components I developed in Natural Language Understanding.

Contributors

Agent

Created

Date Created
  • 2015

Solving Winograd Schema Challenge: using semantic parsing, automatic knowledge acquisition and logical reasoning

Description

Turing test has been a benchmark scale for measuring the human level intelligence in computers since it was proposed by Alan Turing in 1950. However, for last 60 years, the

Turing test has been a benchmark scale for measuring the human level intelligence in computers since it was proposed by Alan Turing in 1950. However, for last 60 years, the applications such as ELIZA, PARRY, Cleverbot and Eugene Goostman, that claimed to pass the test. These applications are either based on tricks to fool humans on a textual chat based test or there has been a disagreement between AI communities on them passing the test. This has led to the school of thought that it might not be the ideal test for predicting the human level intelligence in machines.

Consequently, the Winograd Schema Challenge has been suggested as an alternative to the Turing test. As opposed to deciding the intelligent behavior with the help of chat servers, like it was done in the Turing test, the Winograd Schema Challenge is a question answering test. It consists of sentence and question pairs such that the answer to the question depends on the resolution of a definite pronoun or adjective in the sentence. The answers are fairly intuitive for humans but they are difficult for machines because it requires some sort of background or commonsense knowledge about the sentence.

In this thesis, I propose a novel technique to solve the Winograd Schema Challenge. The technique has three basic modules at its disposal, namely, a Semantic Parser that parses the English text (both sentences and questions) into a formal representation, an Automatic Background Knowledge Extractor that extracts the Background Knowledge pertaining to the given Winograd sentence, and an Answer Set Programming Reasoning Engine that reasons on the given Winograd sentence and the corresponding Background Knowledge. The applicability of the technique is illustrated by solving a subset of Winograd Schema Challenge pertaining to a certain type of Background Knowledge. The technique is evaluated on the subset and a notable accuracy is achieved.

Contributors

Agent

Created

Date Created
  • 2014

156602-Thumbnail Image.png

Explainable Fact Checking by Combining Automated Rule Discovery with Probabilistic Answer Set Programming

Description

The goal of fact checking is to determine if a given claim holds. A promising ap- proach for this task is to exploit reference information in the form of knowledge

The goal of fact checking is to determine if a given claim holds. A promising ap- proach for this task is to exploit reference information in the form of knowledge graphs (KGs), a structured and formal representation of knowledge with semantic descriptions of entities and relations. KGs are successfully used in multiple appli- cations, but the information stored in a KG is inevitably incomplete. In order to address the incompleteness problem, this thesis proposes a new method built on top of recent results in logical rule discovery in KGs called RuDik and a probabilistic extension of answer set programs called LPMLN.

This thesis presents the integration of RuDik which discovers logical rules over a given KG and LPMLN to do probabilistic inference to validate a fact. While automatically discovered rules over a KG are for human selection and revision, they can be turned into LPMLN programs with a minor modification. Leveraging the probabilistic inference in LPMLN, it is possible to (i) derive new information which is not explicitly stored in a KG with a probability associated with it, and (ii) provide supporting facts and rules for interpretable explanations for such decisions.

Also, this thesis presents experiments and results to show that this approach can label claims with high precision. The evaluation of the system also sheds light on the role played by the quality of the given rules and the quality of the KG.

Contributors

Agent

Created

Date Created
  • 2018

155822-Thumbnail Image.png

Computing a Probabilistic Extension of Answer Set Program Language Using ASP and Markov Logic Solvers

Description

LPMLN is a recent probabilistic logic programming language which combines both Answer Set Programming (ASP) and Markov Logic. It is a proper extension of Answer Set programs which allows for

LPMLN is a recent probabilistic logic programming language which combines both Answer Set Programming (ASP) and Markov Logic. It is a proper extension of Answer Set programs which allows for reasoning about uncertainty using weighted rules under the stable model semantics with a weight scheme that is adopted from Markov Logic. LPMLN has been shown to be related to several formalisms from the knowledge representation (KR) side such as ASP and P-Log, and the statistical relational learning (SRL) side such as Markov Logic Networks (MLN), Problog and Pearl’s causal models (PCM). Formalisms like ASP, P-Log, Problog, MLN, PCM have all been shown to embeddable in LPMLN which demonstrates the expressivity of the language. Interestingly, LPMLN has also been shown to reducible to ASP and MLN which is not only theoretically interesting, but also practically important from a computational point of view in that the reductions yield ways to compute LPMLN programs utilizing ASP and MLN solvers. Additionally, the reductions also allow the users to compute other formalisms which can be reduced to LPMLN.

This thesis realizes two implementations of LPMLN based on the reductions from LPMLN to ASP and LPMLN to MLN. This thesis first presents an implementation of LPMLN called LPMLN2ASP that uses standard ASP solvers for computing MAP inference using weak constraints, and marginal and conditional probabilities using stable models enumeration. Next, in this thesis, another implementation of LPMLN called LPMLN2MLN is presented that uses MLN solvers which apply completion to compute the tight fragment of LPMLN programs for MAP inference, marginal and conditional probabilities. The computation using ASP solvers yields exact inference as opposed to approximate inference using MLN solvers. Using these implementations, the usefulness of LPMLN for computing other formalisms is demonstrated by reducing them to LPMLN. The thesis also shows how the implementations are better than the native solvers of some of these formalisms on certain domains. The implementations make use of the current state of the art solving technologies in ASP and MLN, and therefore they benefit from any theoretical and practical advances in these technologies, thereby also benefiting the computation of other formalisms that can be reduced to LPMLN. Furthermore, the implementation also allows for certain SRL formalisms to be computed by ASP solvers, and certain KR formalisms to be computed by MLN solvers.

Contributors

Agent

Created

Date Created
  • 2017