Matching Items (29)
151558-Thumbnail Image.png
Description
Monte Carlo methods often used in nuclear physics, such as auxiliary field diffusion Monte Carlo and Green's function Monte Carlo, have typically relied on phenomenological local real-space potentials containing as few derivatives as possible, such as the Argonne-Urbana family of interactions, to make sampling simple and efficient. Basis set methods

Monte Carlo methods often used in nuclear physics, such as auxiliary field diffusion Monte Carlo and Green's function Monte Carlo, have typically relied on phenomenological local real-space potentials containing as few derivatives as possible, such as the Argonne-Urbana family of interactions, to make sampling simple and efficient. Basis set methods such as no-core shell model or coupled-cluster techniques typically use softer non-local potentials because of their more rapid convergence with basis set size. These non-local potentials are typically defined in momentum space and are often based on effective field theory. Comparisons of the results of the two types of methods are complicated by the use of different potentials. This thesis discusses progress made in using such non-local potentials in quantum Monte Carlo calculations of light nuclei. In particular, it shows methods for evaluating the real-space, imaginary-time propagators needed to perform quantum Monte Carlo calculations using non-local potentials and universality properties of these propagators, how to formulate a good trial wave function for non-local potentials, and how to perform a "one-step" Green's function Monte Carlo calculation for non-local potentials.
ContributorsLynn, Joel E (Author) / Schmidt, Kevin E (Thesis advisor) / Alarcon, Ricardo (Committee member) / Lebed, Richard (Committee member) / Shovkovy, Igor (Committee member) / Shumway, John (Committee member) / Arizona State University (Publisher)
Created2013
151412-Thumbnail Image.png
Description
The theory of quantum electrodynamics predicts that beta decay of the neutron into a proton, electron, and anti-neutrino should be accompanied by a continuous spectrum of photons. A recent experiment, RDK I, reported the first detection of radiative decay photons from neutron beta decay with a branching ratio of (3.09

The theory of quantum electrodynamics predicts that beta decay of the neutron into a proton, electron, and anti-neutrino should be accompanied by a continuous spectrum of photons. A recent experiment, RDK I, reported the first detection of radiative decay photons from neutron beta decay with a branching ratio of (3.09 ± 0.32) × 10-3 in the energy range of 15 keV to 340 keV. This was achieved by prompt coincident detection of an electron and photon, in delayed coincidence with a proton. The photons were detected by using a single bar of bismuth germanate scintillating crystal coupled to an avalanche photodiode. This thesis deals with the follow-up experiment, RDK II, to measure the branching ratio at the level of approximately 1% and the energy spectrum at the level of a few percent. The most significant improvement of RDK II is the use of a photon detector with about an order of magnitude greater solid angle coverage than RDK I. In addition, the detectable energy range has been extended down to approximately 250 eV and up to the endpoint energy of 782 keV. This dissertation presents an overview of the apparatus, development of a new data analysis technique for radiative decay, and results for the ratio of electron-proton-photon coincident Repg to electron-proton coincident Rep events.
ContributorsO'Neill, Benjamin (Author) / Alarcon, Ricardo (Thesis advisor) / Drucker, Jeffery (Committee member) / Lebed, Richard (Committee member) / Comfort, Joseph (Committee member) / Chamberlin, Ralph (Committee member) / Arizona State University (Publisher)
Created2012
153474-Thumbnail Image.png
Description
A search for Klong to pi0 nu nubar was performed on the initial Physics data taken by the KOTO collaboration by the 30-GeV proton synchrotron at JPARC, located in Tokai, Japan. The detector used in the experiment is an upgraded version of the E391 detector, KOTO's predecessor experiment performed at

A search for Klong to pi0 nu nubar was performed on the initial Physics data taken by the KOTO collaboration by the 30-GeV proton synchrotron at JPARC, located in Tokai, Japan. The detector used in the experiment is an upgraded version of the E391 detector, KOTO's predecessor experiment performed at KEK. The analysis was performed on 2.49 E+11 ± (0.91%)stat ± (2.50%)syst kaon decays. The analysis uses Klong to 3pi0, Klong to 2pi0, and Klong to 2 gamma; for normalization and Monte Carlo validation. Based on my independent analysis, the single event sensitivity was determined to be 1.31 E-8 ± (1.22%)stat ± (7.12%)syst, comparable with the E391 result. An upper limit of 5.12 E-8 was measured for the Klong to pi0 nu nubar branching ratio at a 90% confidence level.
ContributorsMcFarland, Duncan (Author) / Comfort, Joseph R. (Thesis advisor) / Alarcon, Ricardo O (Committee member) / Dugger, Michael R (Committee member) / Lunardini, Cecilia (Committee member) / Arizona State University (Publisher)
Created2015
153101-Thumbnail Image.png
Description
Spin-orbit interactions are important in determining nuclear structure. They lead to a shift in the energy levels in the nuclear shell model, which could explain the sequence of magic numbers in nuclei. Also in nucleon-nucleon scattering, the large nucleon polarization observed perpendicular to the plane of scattering needs to be

Spin-orbit interactions are important in determining nuclear structure. They lead to a shift in the energy levels in the nuclear shell model, which could explain the sequence of magic numbers in nuclei. Also in nucleon-nucleon scattering, the large nucleon polarization observed perpendicular to the plane of scattering needs to be explained by adding the spin-orbit interactions in the potential. Their effects change the equation of state and other properties of nuclear matter. Therefore, the simulation of spin-orbit interactions is necessary in nuclear matter.

The auxiliary field diffusion Monte Carlo is an effective and accurate method for calculating the ground state and low-lying exited states in nuclei and nuclear matter. It has successfully employed the Argonne v6' two-body potential to calculate the equation of state in nuclear matter, and has been applied to light nuclei with reasonable agreement with experimental results. However, the spin-orbit interactions were not included in the previous simulations, because the isospin-dependent spin-orbit potential is difficult in the quantum Monte Carlo method. This work develops a new method using extra auxiliary fields to break up the interactions between nucleons, so that the spin-orbit interaction with isospin can be included in the Hamiltonian, and ground-state energy and other properties can be obtained.
ContributorsZhang, Jie (Author) / Schmidt, Kevin E (Thesis advisor) / Alarcon, Ricardo (Committee member) / Lebed, Richard (Committee member) / Shumway, John (Committee member) / Arizona State University (Publisher)
Created2014
150570-Thumbnail Image.png
Description
Quark matter at sufficiently high density and low temperature is expected to be a color superconductor, and may exist in the interior of neutron stars. The properties of two simplest possible color-superconducting phases, i.e., the color-flavor-locked (CFL) and two-flavor superconducting (2SC) phases, are reviewed. The effect of a magnetic field

Quark matter at sufficiently high density and low temperature is expected to be a color superconductor, and may exist in the interior of neutron stars. The properties of two simplest possible color-superconducting phases, i.e., the color-flavor-locked (CFL) and two-flavor superconducting (2SC) phases, are reviewed. The effect of a magnetic field on the pairing dynamics in two-flavor color-superconducting dense quark matter is investigated. A universal form of the gap equation for an arbitrary magnetic field is derived in the weakly coupled regime of QCD at asymptotically high density, using the framework of Schwinger-Dyson equation in the improved rainbow approximation. The results for the gap in two limiting cases, weak and strong magnetic fields, are obtained and discussed. It is shown that the superconducting gap function in the weak magnetic field limit develops a directional dependence in momentum space. This property of the gap parameter is argued to be a consequence of a long-range interaction in QCD.
ContributorsYu, Lang (Author) / Shovkovy, Igor A. (Thesis advisor) / Lunardini, Cecilia (Committee member) / Schmidt, Kevin (Committee member) / Alarcon, Ricardo (Committee member) / Lebed, Richard (Committee member) / Arizona State University (Publisher)
Created2012
150269-Thumbnail Image.png
Description
There are many lines of evidence for anisotropy at all scales in the explosions of core collapse supernovae, e.g. visual inspection of the images of resolved supernova remnants, polarization measurements, velocity profiles, "natal kicks" of neutron stars, or spectroscopic observations of different regions of remnants. Theoretical stability considerations and detailed

There are many lines of evidence for anisotropy at all scales in the explosions of core collapse supernovae, e.g. visual inspection of the images of resolved supernova remnants, polarization measurements, velocity profiles, "natal kicks" of neutron stars, or spectroscopic observations of different regions of remnants. Theoretical stability considerations and detailed numerical simulations have shown that Rayleigh-Taylor (RT) instabilities arise in the star after the explosion, which leads to the early fragmentation of parts of the ejecta. The clumps thus created are of interest to a variety of topics, one of them being the formation environment of the solar system. There is a high probability that the solar system formed in the vicinity of a massive star that, shortly after its formation, exploded as a core collapse supernova. As argued in this thesis as well as other works, a core collapse supernova generally is a good candidate for chemically enriching the forming solar system with material. As forming proto--planetary systems in general have a high probability of being contaminated with supernova material, a method was developed for detecting tracer elements indicative supernova contamination in proto--planetary systems.The degree of the anisotropy of the supernova explosion can have dramatic effects on the mode of delivery of that material to the solar system, or proto--planetary systems in general. Thus it is of particular interest to be able to predict the structure of the supernova ejecta. Numerical simulations of the explosions of core collapse supernovae were done in 3 dimensions in order to study the formation of structure. It is found that RT instabilities result in clumps in the He- and C+O rich regions in the exploding star that are overdense by 1-2 orders of magnitude. These clumps are potential candidates for enriching the solar system with material. In the course of the further evolution of the supernova remnant, these RT clumps are likely to evolve into ejecta knots of the type observed in the Cassiopeia A supernova remnant.
ContributorsEllinger, Carola I (Author) / Young, Patrick A (Thesis advisor) / Desch, Steven J (Committee member) / Timmes, Francis (Committee member) / Scannapieco, Evan (Committee member) / Lunardini, Cecilia (Committee member) / Arizona State University (Publisher)
Created2011
153950-Thumbnail Image.png
Description
Cosmology, carrying imprints from the entire history of the universe, has emerged as a precise observational science over the past 30 years. It can probe physics beyond the Standard Model at energy scales much higher than the weak scale. This thesis reports on some important probes of beyond standard model

Cosmology, carrying imprints from the entire history of the universe, has emerged as a precise observational science over the past 30 years. It can probe physics beyond the Standard Model at energy scales much higher than the weak scale. This thesis reports on some important probes of beyond standard model physics derived in a cosmological setting - (I) It is shown that primordial gravitational waves left over from inflation carry unique detectable CMB signatures for neutrino masses, axions and any other relativistic species that may have been present. (II) Higgs Inflation, the most popular and compelling inflation model with a higgs boson is studied next and it is shown that quantum effects have so far been incorrectly incorporated. A spurious gauge ambiguity arising from quantum effects enters the canonical prediction for observables in Higgs Inflation that must be addressed. (III) A new novel mechanism for generating the observed baryon asymmetry of the universe via decaying gravitinos is proposed. If the Supersymmetry (SUSY) breaking scale is high, then in the presence of R-parity violation, gravitinos can successfully reproduce the baryon asymmetry and evade all low energy constraints. (IV) The final chapter reports on a new completely general analysis of simplified models used in direct detection of dark matter. This is useful to explore what high energy physics constraints can be obtained from direct detection experiments.
ContributorsSabharwal, Subir (Author) / Krauss, Lawrence M (Thesis advisor) / Vachaspati, Tanmay (Thesis advisor) / Mauskopf, Philip D (Committee member) / Lunardini, Cecilia (Committee member) / Arizona State University (Publisher)
Created2015
153934-Thumbnail Image.png
Description
The IceCube Neutrino Observatory has provided the first map of the high energy (~0.01 – 1 PeV) sky in neutrinos. Since neutrinos propagate undeflected, their arrival direction is an important identifier for sources of high energy particle acceleration. Reconstructed arrival directions are consistent with an extragalactic origin, with possibly a

The IceCube Neutrino Observatory has provided the first map of the high energy (~0.01 – 1 PeV) sky in neutrinos. Since neutrinos propagate undeflected, their arrival direction is an important identifier for sources of high energy particle acceleration. Reconstructed arrival directions are consistent with an extragalactic origin, with possibly a galactic component, of the neutrino flux. We present a statistical analysis of positional coincidences of the IceCube neutrinos with known astrophysical objects from several catalogs. For the brightest gamma-ray emitting blazars and for Seyfert galaxies, the numbers of coincidences is consistent with the random, or “null”, distribution. Instead, when considering starburst galaxies with the highest flux in gamma-rays and infrared radiation, up to n = 8 coincidences are found, representing an excess over the ~4 predicted for the null distribution. The probability that this excess is realized in the null case, the p-value, is p = 0.042. This value falls to p = 0.003 for a set of gamma-ray detected starburst galaxies and superbubbles in the galactic neighborhood. Therefore, it is possible that these might account for a subset of IceCube neutrinos. The physical plausibility of such correlation is discussed briefly.
ContributorsEmig, Kimberly L (Author) / Windhorst, Roiger (Thesis advisor) / Lunardini, Cecilia (Thesis advisor) / Groppi, Christopher (Committee member) / Arizona State University (Publisher)
Created2015
156309-Thumbnail Image.png
Description
The Cosmic Microwave Background (CMB) has provided precise information on the evolution of the Universe and the current cosmological paradigm. The CMB has not yet provided definitive information on the origin and strength of any primordial magnetic fields or how they affect the presence of magnetic fields observed throughout the

The Cosmic Microwave Background (CMB) has provided precise information on the evolution of the Universe and the current cosmological paradigm. The CMB has not yet provided definitive information on the origin and strength of any primordial magnetic fields or how they affect the presence of magnetic fields observed throughout the cosmos. This work outlines an alternative method to investigating and identifying the presence of cosmic magnetic fields. This method searches for Faraday Rotation (FR) and specifically uses polarized CMB photons as back-light. I find that current generation CMB experiments may be not sensitive enough to detect FR but next generation experiments should be able to make highly significant detections. Identifying FR with the CMB will provide information on the component of magnetic fields along the line of sight of observation.

The 21cm emission from the hyperfine splitting of neutral Hydrogen in the early universe is predicted to provide precise information about the formation and evolution of cosmic structure, complementing the wealth of knowledge gained from the CMB.

21cm cosmology is a relatively new field, and precise measurements of the Epoch of Reionization (EoR) have not yet been achieved. In this work I present 2σ upper limits on the power spectrum of 21cm fluctuations (Δ²(k)) probed at the cosmological wave number k from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) 64 element deployment. I find upper limits on Δ²(k) in the range 0.3 < k < 0.6 h/Mpc to be (650 mK)², (450 mK)², (390 mK)², (250 mK)², (280mK)², (250 mK)² at redshifts z = 10.87, 9.93, 8.91, 8.37, 8.13 and 7.48 respectively

Building on the power spectrum analysis, I identify a major limiting factor in detecting the 21cm power spectrum.

This work is concluded by outlining a metric to evaluate the predisposition of redshifted 21cm interferometers to foreground contamination in power spectrum estimation. This will help inform the construction of future arrays and enable high fidelity imaging and

cross-correlation analysis with other high redshift cosmic probes like the CMB and other upcoming all sky surveys. I find future

arrays with uniform (u,v) coverage and small spectral evolution of their response in the (u,v,f) cube can minimize foreground leakage while pursuing 21cm imaging.
ContributorsKolopanis, Matthew John (Author) / Bowman, Judd (Thesis advisor) / Mauskopf, Philip (Thesis advisor) / Lunardini, Cecilia (Committee member) / Chamberlin, Ralph (Committee member) / Vachaspati, Tanmay (Committee member) / Arizona State University (Publisher)
Created2018
157133-Thumbnail Image.png
Description
Chiral symmetry and its anomalous and spontaneous breaking play an important role

in particle physics, where it explains the origin of pion and hadron mass hierarchy

among other things.

Despite its microscopic origin chirality may also lead to observable effects

in macroscopic physical systems -- relativistic plasmas made of chiral

(spin-$\frac{1}{2}$)

Chiral symmetry and its anomalous and spontaneous breaking play an important role

in particle physics, where it explains the origin of pion and hadron mass hierarchy

among other things.

Despite its microscopic origin chirality may also lead to observable effects

in macroscopic physical systems -- relativistic plasmas made of chiral

(spin-$\frac{1}{2}$) particles.

Such plasmas are called \textit{chiral}.

The effects include non-dissipative currents in external fields that could be present

even in quasi-equilibrium, such as the chiral magnetic (CME) and separation (CSE)

effects, as well as a number of inherently chiral collective modes

called the chiral magnetic (CMW) and vortical (CVW) waves.

Applications of chiral plasmas are truly interdisciplinary, ranging from

hot plasma filling the early Universe, to dense matter in neutron stars,

to electronic band structures in Dirac and Weyl semimetals, to quark-gluon plasma

produced in heavy-ion collisions.

The main focus of this dissertation is a search for traces of chiral physics

in the spectrum of collective modes in chiral plasmas.

I start from relativistic chiral kinetic theory and derive

first- and second-order chiral hydrodynamics.

Then I establish key features of an equilibrium state that describes many

physical chiral systems and use it to find the full spectrum of collective modes

in high-temperature and high-density cases.

Finally, I consider in detail the fate of the two inherently chiral waves, namely

the CMW and the CVW, and determine their detection prospects.

The main results of this dissertation are the formulation of a fully covariant

dissipative chiral hydrodynamics and the calculation of the spectrum of collective

modes in chiral plasmas.

It is found that the dissipative effects and dynamical electromagnetism play

an important role in most cases.

In particular, it is found that both the CMW and the CVW are heavily damped by the usual

Ohmic dissipation in charged plasmas and the diffusion effects in neutral plasmas.

These findings prompt a search for new physical observables in heavy-ion collisions,

as well as a revision of potential applications of chiral theories in

cosmology and solid-state physics.
ContributorsRybalka, Denys (Author) / Shovkovy, Igor (Thesis advisor) / Lunardini, Cecilia (Committee member) / Timmes, Francis (Committee member) / Vachaspati, Tanmay (Committee member) / Arizona State University (Publisher)
Created2019