Matching Items (52)

Filtering by

Clear all filters

149817-Thumbnail Image.png

Characterization of carbonaceous aerosol over the north Atlantic Ocean

Description

Atmospheric particulate matter has a substantial impact on global climate due to its ability to absorb/scatter solar radiation and act as cloud condensation nuclei (CCN). Yet, little is known about marine aerosol, in particular, the carbonaceous fraction. In the present

Atmospheric particulate matter has a substantial impact on global climate due to its ability to absorb/scatter solar radiation and act as cloud condensation nuclei (CCN). Yet, little is known about marine aerosol, in particular, the carbonaceous fraction. In the present work, particulate matter was collected, using High Volume (HiVol) samplers, onto quartz fiber substrates during a series of research cruises on the Atlantic Ocean. Samples were collected on board the R/V Endeavor on West–East (March–April, 2006) and East–West (June–July, 2006) transects in the North Atlantic, as well as on the R/V Polarstern during a North–South (October–November, 2005) transect along the western coast of Europe and Africa. The aerosol total carbon (TC) concentrations for the West–East (Narragansett, RI, USA to Nice, France) and East–West (Heraklion, Crete, Greece to Narragansett, RI, USA) transects were generally low over the open ocean (0.36±0.14 μg C/m3) and increased as the ship approached coastal areas (2.18±1.37 μg C/m3), due to increased terrestrial/anthropogenic aerosol inputs. The TC for the North–South transect samples decreased in the southern hemisphere with the exception of samples collected near the 15th parallel where calculations indicate the air mass back trajectories originated from the continent. Seasonal variation in organic carbon (OC) was seen in the northern hemisphere open ocean samples with average values of 0.45 μg/m3 and 0.26 μg/m3 for spring and summer, respectively. These low summer time values are consistent with SeaWiFS satellite images that show decreasing chlorophyll a concentration (a proxy for phytoplankton biomass) in the summer. There is also a statistically significant (p<0.05) decline in surface water fluorescence in the summer. Moreover, examination of water–soluble organic carbon (WSOC) shows that the summer aerosol samples appear to have a higher fraction of the lower molecular weight material, indicating that the samples may be more oxidized (aged). The seasonal variation in aerosol content seen during the two 2006 cruises is evidence that a primary biological marine source is a significant contributor to the carbonaceous particulate in the marine atmosphere and is consistent with previous studies of clean marine air masses.

Contributors

Agent

Created

Date Created
2011

152255-Thumbnail Image.png

Contaminants of emerging concern in U.S. sewage sludges and forecasting of associated ecological and human health risks using sewage epidemiology approaches

Description

Many manmade chemicals used in consumer products are ultimately washed down the drain and are collected in municipal sewers. Efficient chemical monitoring at wastewater treatment (WWT) plants thus may provide up-to-date information on chemical usage rates for epidemiological assessments. The

Many manmade chemicals used in consumer products are ultimately washed down the drain and are collected in municipal sewers. Efficient chemical monitoring at wastewater treatment (WWT) plants thus may provide up-to-date information on chemical usage rates for epidemiological assessments. The objective of the present study was to extrapolate this concept, termed 'sewage epidemiology', to include municipal sewage sludge (MSS) in identifying and prioritizing contaminants of emerging concern (CECs). To test this the following specific aims were defined: i) to screen and identify CECs in nationally representative samples of MSS and to provide nationwide inventories of CECs in U.S. MSS; ii) to investigate the fate and persistence in MSS-amended soils, of sludge-borne hydrophobic CECs; and iii) to develop an analytical tool relying on contaminant levels in MSS as an indicator for identifying and prioritizing hydrophobic CECs. Chemicals that are primarily discharged to the sewage systems (alkylphenol surfactants) and widespread persistent organohalogen pollutants (perfluorochemicals and brominated flame retardants) were analyzed in nationally representative MSS samples. A meta-analysis showed that CECs contribute about 0.04-0.15% to the total dry mass of MSS, a mass equivalent of 2,700-7,900 metric tonnes of chemicals annually. An analysis of archived mesocoms from a sludge weathering study showed that 64 CECs persisted in MSS/soil mixtures over the course of the experiment, with half-lives ranging between 224 and >990 days; these results suggest an inherent persistence of CECs that accumulate in MSS. A comparison of the spectrum of chemicals (n=52) analyzed in nationally representative biological specimens from humans and MSS revealed 70% overlap. This observed co-occurrence of contaminants in both matrices suggests that MSS may serve as an indicator for ongoing human exposures and body burdens of pollutants in humans. In conclusion, I posit that this novel approach in sewage epidemiology may serve to pre-screen and prioritize the several thousands of known or suspected CECs to identify those that are most prone to pose a risk to human health and the environment.

Contributors

Agent

Created

Date Created
2013

152297-Thumbnail Image.png

Single cell RT-qPCR based ocean environmental sensing device development

Description

This thesis research focuses on developing a single-cell gene expression analysis method for marine diatom Thalassiosira pseudonana and constructing a chip level tool to realize the single cell RT-qPCR analysis. This chip will serve as a conceptual foundation for future

This thesis research focuses on developing a single-cell gene expression analysis method for marine diatom Thalassiosira pseudonana and constructing a chip level tool to realize the single cell RT-qPCR analysis. This chip will serve as a conceptual foundation for future deployable ocean monitoring systems. T. pseudonana, which is a common surface water microorganism, was detected in the deep ocean as confirmed by phylogenetic and microbial community functional studies. Six-fold copy number differences between 23S rRNA and 23S rDNA were observed by RT-qPCR, demonstrating the moderate functional activity of detected photosynthetic microbes in the deep ocean including T. pseudonana. Because of the ubiquity of T. pseudonana, it is a good candidate for an early warning system for ocean environmental perturbation monitoring. This early warning system will depend on identifying outlier gene expression at the single-cell level. An early warning system based on single-cell analysis is expected to detect environmental perturbations earlier than population level analysis which can only be observed after a whole community has reacted. Preliminary work using tube-based, two-step RT-qPCR revealed for the first time, gene expression heterogeneity of T. pseudonana under different nutrient conditions. Heterogeneity was revealed by different gene expression activity for individual cells under the same conditions. This single cell analysis showed a skewed, lognormal distribution and helped to find outlier cells. The results indicate that the geometric average becomes more important and representative of the whole population than the arithmetic average. This is in contrast with population level analysis which is limited to arithmetic averages only and highlights the value of single cell analysis. In order to develop a deployable sensor in the ocean, a chip level device was constructed. The chip contains surface-adhering droplets, defined by hydrophilic patterning, that serve as real-time PCR reaction chambers when they are immersed in oil. The chip had demonstrated sensitivities at the single cell level for both DNA and RNA. The successful rate of these chip-based reactions was around 85%. The sensitivity of the chip was equivalent to published microfluidic devices with complicated designs and protocols, but the production process of the chip was simple and the materials were all easily accessible in conventional environmental and/or biology laboratories. On-chip tests provided heterogeneity information about the whole population and were validated by comparing with conventional tube based methods and by p-values analysis. The power of chip-based single-cell analyses were mainly between 65-90% which were acceptable and can be further increased by higher throughput devices. With this chip and single-cell analysis approaches, a new paradigm for robust early warning systems of ocean environmental perturbation is possible.

Contributors

Agent

Created

Date Created
2013

151911-Thumbnail Image.png

Environmentally responsible use of nanomaterials for the photocatalytic reduction of nitrate in water

Description

Nitrate is the most prevalent water pollutant limiting the use of groundwater as a potable water source. The overarching goal of this dissertation was to leverage advances in nanotechnology to improve nitrate photocatalysis and transition treatment to the full-scale. The

Nitrate is the most prevalent water pollutant limiting the use of groundwater as a potable water source. The overarching goal of this dissertation was to leverage advances in nanotechnology to improve nitrate photocatalysis and transition treatment to the full-scale. The research objectives were to (1) examine commercial and synthesized photocatalysts, (2) determine the effect of water quality parameters (e.g., pH), (3) conduct responsible engineering by ensuring detection methods were in place for novel materials, and (4) develop a conceptual framework for designing nitrate-specific photocatalysts. The key issues for implementing photocatalysis for nitrate drinking water treatment were efficient nitrate removal at neutral pH and by-product selectivity toward nitrogen gases, rather than by-products that pose a human health concern (e.g., nitrite). Photocatalytic nitrate reduction was found to follow a series of proton-coupled electron transfers. The nitrate reduction rate was limited by the electron-hole recombination rate, and the addition of an electron donor (e.g., formate) was necessary to reduce the recombination rate and achieve efficient nitrate removal. Nano-sized photocatalysts with high surface areas mitigated the negative effects of competing aqueous anions. The key water quality parameter impacting by-product selectivity was pH. For pH < 4, the by-product selectivity was mostly N-gas with some NH4+, but this shifted to NO2- above pH = 4, which suggests the need for proton localization to move beyond NO2-. Co-catalysts that form a Schottky barrier, allowing for localization of electrons, were best for nitrate reduction. Silver was optimal in heterogeneous systems because of its ability to improve nitrate reduction activity and N-gas by-product selectivity, and graphene was optimal in two-electrode systems because of its ability to shuttle electrons to the working electrode. "Environmentally responsible use of nanomaterials" is to ensure that detection methods are in place for the nanomaterials tested. While methods exist for the metals and metal oxides examined, there are currently none for carbon nanotubes (CNTs) and graphene. Acknowledging that risk assessment encompasses dose-response and exposure, new analytical methods were developed for extracting and detecting CNTs and graphene in complex organic environmental (e.g., urban air) and biological matrices (e.g. rat lungs).

Contributors

Agent

Created

Date Created
2013

154023-Thumbnail Image.png

Identification of N-Nitrosodimethylamine precursors to improve their control

Description

N-nitrosodimethylamine (NDMA) is a probable human carcinogen and drinking water disinfection by-product. NDMA forms as the product of reactions between chloramines and precursor compounds in water. This dissertation aims to provide insight into the removal of NDMA precursors, their nature,

N-nitrosodimethylamine (NDMA) is a probable human carcinogen and drinking water disinfection by-product. NDMA forms as the product of reactions between chloramines and precursor compounds in water. This dissertation aims to provide insight into the removal of NDMA precursors, their nature, and a method to aid in their identification. Watershed-derived precursors accounted for more of and greater variability to NDMA formation upon chloramination than polymer-derived precursors in environmental samples. Coagulation polymers are quaternary amines, which have low NDMA yield but high use rates. Watershed-derived precursors were removed up to 90% by sorption to activated carbon, but activated carbon exhibited much less (<10%) sorption of polymer-derived precursors. Combined with literature NDMA molar yields of model anthropogenic compounds, where anthropogenic chemicals in some cases have NDMA yields >90% and biological compounds always have yields <2%, trace, organic, amine containing, anthropogenic chemicals were implicated as the most likely source of NDMA precursors in the watershed. Although activated carbon removes these precursors well, identification of individual compounds may result in more cost effective mitigation strategies. Therefore, I developed a method to isolate NDMA precursors from other organic matter into methanol to facilitate their identification. Optimization of the method resulted in a median recovery of NDMA precursors of 82% from 10 surface waters and one wastewater. The method produces 1,000X concentrated NDMA precursors and, in collaboration with the University of Colorado Center for Environmental Mass Spectrometry, time of flight mass spectrometry (TOF-MS) was performed on multiple treated wastewater and raw drinking water isolates. During TOF-MS, tertiary amines can cleave to form a neutral loss and an R group ion that is dependent on the original structure and I wrote a software program to “trawl” exported TOF-MS spectra for the diagnostic neutral loss resulting from fragmentation of tertiary amines. Methadone was identified as one new NDMA precursor that occurs at concentrations that form physiologically relevant levels of NDMA in surface water and wastewater. The approach used here to identify NDMA precursors is adaptable to other unknown disinfection by-product precursors given that a functional group is known that can 1)control sorption and 2)produce a predictable diagnostic fragment.

Contributors

Agent

Created

Date Created
2015

154027-Thumbnail Image.png

Methods and devices for assessment of fiprole pesticides in engineered waterways

Description

This dissertation focused on the development and application of state-of-the-art monitoring tools and analysis methods for tracking the fate of trace level contaminants in the natural and built water environments, using fipronil as a model; fipronil and its primary degradates

This dissertation focused on the development and application of state-of-the-art monitoring tools and analysis methods for tracking the fate of trace level contaminants in the natural and built water environments, using fipronil as a model; fipronil and its primary degradates (known collectively as fiproles) are among a group of trace level emerging environmental contaminants that are extremely potent arthropodic neurotoxins. The work further aimed to fill in data gaps regarding the presence and fate of fipronil in engineered water systems, specifically in a wastewater treatment plant (WWTP), and in an engineered wetland. A review of manual and automated “active” water sampling technologies motivated the development of two new automated samplers capable of in situ biphasic extraction of water samples across the bulk water/sediment interface of surface water systems. Combined with an optimized method for the quantification of fiproles, the newly developed In Situ Sampler for Biphasic water monitoring (IS2B) was deployed along with conventional automated water samplers, to study the fate and occurrence of fiproles in engineered water environments; continuous sampling over two days and subsequent analysis yielded average total fiprole concentrations in wetland surface water (9.9 ± 4.6 to 18.1 ± 4.6 ng/L) and wetland sediment pore water (9.1 ± 3.0 to 12.6 ± 2.1 ng/L). A mass balance of the WWTP located immediately upstream demonstrated unattenuated breakthrough of total fiproles through the WWTP with 25 ± 3 % of fipronil conversion to degradates, and only limited removal of total fiproles in the wetland (47 ± 13%). Extrapolation of local emissions (5–7 g/d) suggests nationwide annual fiprole loadings from WWTPs to U.S. surface waters on the order of about one half to three quarters of a metric tonne. The qualitative and quantitative data collected in this work have regulatory implications, and the sampling tools and analysis strategies described in this thesis have broad applicability in the assessment of risks posed by trace level environmental contaminants.

Contributors

Agent

Created

Date Created
2015

153856-Thumbnail Image.png

Assessing outdoor algal cultivation in panel and raceway photobioreactors for biomass and lipid productivity

Description

Over the past decade, there has been a revival in applied algal research and attempts at commercialization. However, the main limitation in algal commercialization is the process of cultivation, which is one of the main cost and energy burdens in

Over the past decade, there has been a revival in applied algal research and attempts at commercialization. However, the main limitation in algal commercialization is the process of cultivation, which is one of the main cost and energy burdens in producing biomass that is economically feasible for different products. There are several parameters that must be considered when growing algae, including the type of growth system and operating mode, preferred organism(s), and many other criteria that affect the process of algal cultivation. The purpose of this dissertation was to assess key variables that affect algal productivity and to improve outdoor algal cultivation procedures. The effect of reducing or eliminating aeration of algal cultures at night, in flat panel photobioreactors (panels), was investigated to assess the reduction of energy consumption at night. The lack of aeration at night resulted in anoxic conditions, which significantly reduced lipid accumulation and productivity, but did not affect log phase biomass productivity. In addition, the reduction in aeration resulted in lower pH values, which prevented ammonia volatility and toxicity. Raceways are operated at deeper cultivation depths, which limit culture density and light exposure. Experimentation was accomplished to determine the effects of decreasing cultivation depth, which resulted in increased lipid accumulation and lipid productivity, but did not significantly affect biomass productivity. A comparison of semi-continuous cultivation of algae in raceways and panels in side-by-side experiments showed that panels provided better temperature control and higher levels of mixing, which resulted in higher biomass productivity. In addition, sub-optimal morning temperatures in raceways compared to panels were a significant factor in reducing algae biomass productivity. The results from this research indicate that increasing lipid productivity and biomass productivity cannot be completed simultaneously. Therefore, the desired product will determine if lipid or biomass productivity is more crucial, which also dictates whether the system should be operated in batch mode to either allow lipid accumulation or in semi-continuous mode to allow high biomass productivity. This work is a critical step in improving algal cultivation by understanding key variables that limit biomass and lipid productivity.

Contributors

Agent

Created

Date Created
2015

154300-Thumbnail Image.png

Developing anticipatory life cycle assessment tools to support responsible innovation

Description

Several prominent research strategy organizations recommend applying life cycle assessment (LCA) early in the development of emerging technologies. For example, the US Environmental Protection Agency, the National Research Council, the Department of Energy, and the National Nanotechnology Initiative identify

Several prominent research strategy organizations recommend applying life cycle assessment (LCA) early in the development of emerging technologies. For example, the US Environmental Protection Agency, the National Research Council, the Department of Energy, and the National Nanotechnology Initiative identify the potential for LCA to inform research and development (R&D) of photovoltaics and products containing engineered nanomaterials (ENMs). In this capacity, application of LCA to emerging technologies may contribute to the growing movement for responsible research and innovation (RRI). However, existing LCA practices are largely retrospective and ill-suited to support the objectives of RRI. For example, barriers related to data availability, rapid technology change, and isolation of environmental from technical research inhibit application of LCA to developing technologies. This dissertation focuses on development of anticipatory LCA tools that incorporate elements of technology forecasting, provide robust explorations of uncertainty, and engage diverse innovation actors in overcoming retrospective approaches to environmental assessment and improvement of emerging technologies. Chapter one contextualizes current LCA practices within the growing literature articulating RRI and identifies the optimal place in the stage gate innovation model to apply LCA. Chapter one concludes with a call to develop anticipatory LCA – building on the theory of anticipatory governance – as a series of methodological improvements that seek to align LCA practices with the objectives of RRI.

Chapter two provides a framework for anticipatory LCA, identifies where research from multiple disciplines informs LCA practice, and builds off the recommendations presented in the preceding chapter. Chapter two focuses on crystalline and thin film photovoltaics (PV) to illustrate the novel framework, in part because PV is an environmentally motivated technology undergoing extensive R&D efforts and rapid increases in scale of deployment. The chapter concludes with a series of research recommendations that seek to direct PV research agenda towards pathways with the greatest potential for environmental improvement.

Similar to PV, engineered nanomaterials (ENMs) are an emerging technology with numerous potential applications, are the subject of active R&D efforts, and are characterized by high uncertainty regarding potential environmental implications. Chapter three introduces a Monte Carlo impact assessment tool based on the toxicity impact assessment model USEtox and demonstrates stochastic characterization factor (CF) development to prioritize risk research with the greatest potential to improve certainty in CFs. The case study explores a hypothetical decision in which personal care product developers are interested in replacing the conventional antioxidant niacinamide with the novel ENM C60, but face high data uncertainty, are unsure regarding potential ecotoxicity impacts associated with this substitution, and do not know what future risk-relevant experiments to invest in that most efficiently improve certainty in the comparison. Results suggest experiments that elucidate C60 partitioning to suspended solids should be prioritized over parameters with little influence on results. This dissertation demonstrates a novel anticipatory approach to exploration of uncertainty in environmental models that can create new, actionable knowledge with potential to guide future research and development decisions.

Contributors

Agent

Created

Date Created
2016

A low-energy, low-cost field deployable sampler for microbial DNA profiling

Description

Filtration for microfluidic sample-collection devices is desirable for sample selection, concentration, preprocessing, and downstream manipulation, but microfabricating the required sub-micrometer filtration structure is an elaborate process. This thesis presents a simple method to fabricate polydimethylsiloxane (PDMS) devices with an integrated

Filtration for microfluidic sample-collection devices is desirable for sample selection, concentration, preprocessing, and downstream manipulation, but microfabricating the required sub-micrometer filtration structure is an elaborate process. This thesis presents a simple method to fabricate polydimethylsiloxane (PDMS) devices with an integrated membrane filter that will sample, lyse, and extract the DNA from microorganisms in aqueous environments. An off-the-shelf membrane filter disc was embedded in a PDMS layer and sequentially bound with other PDMS channel layers. No leakage was observed during filtration. This device was validated by concentrating a large amount of cyanobacterium Synechocystis in simulated sample water with consistent performance across devices. After accumulating sufficient biomass on the filter, a sequential electrochemical lysing process was performed by applying 5VDC across the filter. This device was further evaluated by delivering several samples of differing concentrations of cyanobacterium Synechocystis then quantifying the DNA using real-time PCR. Lastly, an environmental sample was run through the device and the amount of photosynthetic microorganisms present in the water was determined. The major breakthroughs in this design are low energy demand, cheap materials, simple design, straightforward fabrication, and robust performance, together enabling wide-utility of similar chip-based devices for field-deployable operations in environmental micro-biotechnology.

Contributors

Agent

Created

Date Created
2011

150327-Thumbnail Image.png

Separation of oil and other organics from water using inverse fluidization of hydrophobic aerogels

Description

This dissertation presents a systematic study of the sorption mechanisms of hydrophobic silica aerogel (Cabot Nanogel®) granules for oil and volatile organic compounds (VOCs) in different phases. The performance of Nanogel for removing oil from laboratory synthetic oil-in-water emulsions and

This dissertation presents a systematic study of the sorption mechanisms of hydrophobic silica aerogel (Cabot Nanogel®) granules for oil and volatile organic compounds (VOCs) in different phases. The performance of Nanogel for removing oil from laboratory synthetic oil-in-water emulsions and real oily wastewater, and VOCs from their aqueous solution, in both packed bed (PB) and inverse fluidized bed (IFB) modes was also investigated. The sorption mechanisms of VOCs in the vapor, pure liquid, and aqueous solution phases, free oil, emulsified oil, and oil from real wastewater on Nanogel were systematically studied via batch kinetics and equilibrium experiments. The VOC results show that the adsorption of vapor is very slow due to the extremely low thermal conductivity of Nanogel. The faster adsorption rates in the liquid and solution phases are controlled by the mass transport, either by capillary flow or by vapor diffusion/adsorption. The oil results show that Nanogel has a very high capacity for adsorption of pure oils. However, the rate for adsorption of oil from an oil-water emulsion on the Nanogel is 5-10 times slower than that for adsorption of pure oils or organics from their aqueous solutions. For an oil-water emulsion, the oil adsorption capacity decreases with an increasing proportion of the surfactant added. An even lower sorption capacity and a slower sorption rate were observed for a real oily wastewater sample due to the high stability and very small droplet size of the wastewater. The performance of Nanogel granules for removing emulsified oil, oil from real oily wastewater, and toluene at low concentrations in both PB and IFB modes was systematically investigated. The hydrodynamics characteristics of the Nanogel granules in an IFB were studied by measuring the pressure drop and bed expansion with superficial water velocity. The density of the Nanogel granules was calculated from the plateau pressure drop of the IFB. The oil/toluene removal efficiency and the capacity of the Nanogel granules in the PB or IFB were also measured experimentally and predicted by two models based on equilibrium and kinetic batch measurements of the Nanogel granules.

Contributors

Agent

Created

Date Created
2011