Matching Items (17)
156129-Thumbnail Image.png
Description
An urgent need for developing new chemical separations that address the capture of dilute impurities from fluid streams are needed. These separations include the capture of carbon dioxide from the atmosphere, impurities from drinking water, and toxins from blood streams. A challenge is presented when capturing these impurities because the

An urgent need for developing new chemical separations that address the capture of dilute impurities from fluid streams are needed. These separations include the capture of carbon dioxide from the atmosphere, impurities from drinking water, and toxins from blood streams. A challenge is presented when capturing these impurities because the energy cost for processing the bulk fluid stream to capture trace contaminants is too great using traditional thermal separations. The development of sorbents that may capture these contaminants passively has been emphasized in academic research for some time, producing many designer materials including metal-organic frameworks (MOFs) and polymeric resins. Scaffolds must be developed to effectively anchor these materials in a passing fluid stream. In this work, two design techniques are presented for anchoring these sorbents in electrospun fiber scaffolds.

The first technique involves imbedding sorbent particles inside the fibers: forming particle-embedded fibers. It is demonstrated that particles will spontaneously coat themselves in the fibers at dilute loadings, but at higher loadings some get trapped on the fiber surface. A mathematical model is used to show that when these particles are embedded, the polymeric coating provided by the fibers may be designed to increase the kinetic selectivity and/or stability of the embedded sorbents. Two proof-of-concept studies are performed to validate this model including the increased selectivity of carbon dioxide over nitrogen when the MOF ZIF-8 is embedded in a poly(ethylene oxide) and Matrimid polymer blend; and that increased hydrothermal stability is realized when the water-sensitive MOF HKUST-1 is embedded in polystyrene fibers relative to pure HKUST-1 powder.

The second technique involves the creation of a pore network throughout the fiber to increase accessibility of embedded sorbent particles. It is demonstrated that the removal of a blended highly soluble polymer additive from the spun particle-containing fibers leaves a pore network behind without removing the embedded sorbent. The increased accessibility of embedded sorbents is validated by embedding a known direct air capture sorbent in porous electrospun fibers, and demonstrating that they have the fastest kinetic uptake of any direct air capture sorbent reported in literature to date, along with over 90% sorbent accessibility.
ContributorsArmstrong, Mitchell (Author) / Mu, Bin (Thesis advisor) / Green, Matthew (Committee member) / Seo, Dong (Committee member) / Lackner, Klaus (Committee member) / Holloway, Julianne (Committee member) / Arizona State University (Publisher)
Created2018
156903-Thumbnail Image.png
Description
Iodide (I-) in surface and groundwaters is a potential precursor for the formation of iodinated disinfection by-products (I-DBPs) during drinking water treatment. The aim of this thesis is to provide a perspective on the sources and occurrence of I- in United States (US) source waters based on ~9200 surface water

Iodide (I-) in surface and groundwaters is a potential precursor for the formation of iodinated disinfection by-products (I-DBPs) during drinking water treatment. The aim of this thesis is to provide a perspective on the sources and occurrence of I- in United States (US) source waters based on ~9200 surface water (SW) and groundwater (GW) sampling locations. The median I- concentrations observed was 16 μg/l and 14 μg/l, respectively in SW and GW. However, these samples were rarely collected at water treatment plant (WTP) intakes, where such iodide occurrence data is needed to understand impacts on DBPs. Most samples were collected in association with geochemical studies. We conclude that I- occurrence appears to be influenced by geological features, including halite rock/river basin formations, saline aquifers and organic rich shale/oil formations. Halide ratios (Cl-/I-, Br-/I- and Cl-/Br-) were analyzed to determine the I- origin in source waters. SW and GW had median Cl-/I- ratios of ~3600 μg/μg and median Br-/I- ratios of ~15 μg/μg. For states with I- concentration >50 μg/l (e.g., Montana and North Dakota), a single source (i.e., organic rich formations) can be identified. However, for states like California and Texas that have wide-ranging I- concentration of below detection limit to >250 μg/l, I- occurrence can be attributed to a mixture of marine and organic signatures. The lack of information of organic iodine, inorganic I- and IO3- in source waters limits our ability to predict I-DBPs formed during drinking water treatment, and new occurrence studies are needed to fill these data gaps. This is first of its kind study to understand the I- occurrence through historical data, however we also identify the shortcomings of existing databases used to carry out this study.
ContributorsSharma, Naushita (Author) / Westerhoff, Paul (Thesis advisor) / Lackner, Klaus (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2018
154691-Thumbnail Image.png
Description
This thesis examines the use of the moisture swing resin materials employed at the Center for Negative Carbon Emissions (CNCE) in order to provide carbon dioxide from ambient air to photobioreactors containing extremophile cyanobacteria cultured at the Arizona Center for Algae Technology and Innovation (AzCATI). For this purpose, a

This thesis examines the use of the moisture swing resin materials employed at the Center for Negative Carbon Emissions (CNCE) in order to provide carbon dioxide from ambient air to photobioreactors containing extremophile cyanobacteria cultured at the Arizona Center for Algae Technology and Innovation (AzCATI). For this purpose, a carbon dioxide feeding device was designed, built, and tested. The results indicate how much resin should be used with a given volume of algae medium: approximately 500 grams of resin can feed 1% CO2 at about three liters per minute to a ten liter medium of the Galdieria sulphuraria 5587.1 strain for one hour (equivalent to about 0.1 grams of carbon dioxide per hour per seven grams of algae). Using the resin device, the algae grew within their normal growth range: 0.096 grams of ash-free dry weight per liter over a six hour period. Future applications in which the resin-to-algae process can be utilized are discussed.
ContributorsBeaubien, Courtney (Author) / Lackner, Klaus (Thesis advisor) / Lammers, Peter (Committee member) / Atkins, Steve (Committee member) / Arizona State University (Publisher)
Created2016
Description

To mitigate climate change, carbon needs to be removed from the atmosphere and stored for thousands of years. Currently, carbon removal and storage are voluntarily procured, and longevity of storage is inconsistently defined and regulated. Clauses can be added to procurement contracts to require long-term management and increase the durability

To mitigate climate change, carbon needs to be removed from the atmosphere and stored for thousands of years. Currently, carbon removal and storage are voluntarily procured, and longevity of storage is inconsistently defined and regulated. Clauses can be added to procurement contracts to require long-term management and increase the durability of storage. Well-designed and properly enforced contracts can pave the way to future regulation for long-term carbon management.

ContributorsHagood, Emily (Author) / Lackner, Klaus (Thesis director) / Marchant, Gary (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Sustainability (Contributor)
Created2023-05
168342-Thumbnail Image.png
Description
The current level of carbon dioxide in ambient air is increasing and reinforcing the severity of global warming. Several techniques have been developed to capture the gas directly from the air. Moisture swing absorption (MSA) is a mechanism through which a reactive surface, namely resin beads, absorbs carbon dioxide

The current level of carbon dioxide in ambient air is increasing and reinforcing the severity of global warming. Several techniques have been developed to capture the gas directly from the air. Moisture swing absorption (MSA) is a mechanism through which a reactive surface, namely resin beads, absorbs carbon dioxide when dry and releases it when wet. The ionic complexity of the surface of the bead interacts with CO2 when H2O contents are low, and CO2 diffuses as bicarbonate or carbonate. Hence, diffusion-drift-reaction equations describe the moving species behavior MS sorbent. A numerical model has been developed previously applying finite difference scheme (FDS) to estimate the evolution of species concentrations over uniform time and space intervals. The methodology was based on a specific membrane and bead geometry. In this study, FDS was employed again with modifications over the boundary conditions. Neumann boundary condition was replaced by Robin boundary condition which enforced diffusion and drift fluxes at the center of the sorbent. Furthermore, the generic equations were approximated by another numerical scheme, Finite volume scheme (FVS), which discretizes the spatial domain into cells that conserves the mass of species within. The model was predicted to reduce the total carbon mass loss within the system. Both schemes were accommodated with a simulated model of isolated chamber that contained arbitrary sorbent. Moreover, to derive the outcomes of absorption/desorption cycles and validate the performance of FVS, Langmuir curve was utilized to obtain CO2 saturation in the sorbent and examine two scenarios: one by varying the partial pressure of CO2 (PCO2) in the chamber at constant H2O (PH2O), or changing PH2O at constant PCO2. The results from FDS approximation, when adjusting the center with Robin boundary condition, show 0.11% lower carbon mass gain than when applying Neumann boundary condition. On the other hand, FVS minimizes the mass loss by 0.3% lower than the original total carbon mass and achieves sorbent saturation without any adjustment. Moreover, the isotherm curve demonstrates that increasing PH2O reduces CO2 saturation and is dependent on the linear and non-linear correlations used to estimate water concentration on the surface.
ContributorsMejbel, Meteb (Author) / Lackner, Klaus (Thesis advisor) / Boyer, Treavor (Committee member) / Wang, Zhihua (Committee member) / Arizona State University (Publisher)
Created2021
170043-Thumbnail Image.png
Description

We analyze current approaches to carbon accounting for removed carbon sold on carbon markets, focusing on carbon crediting under the framing of a remaining carbon budget, the issue of durability, and approaches to accounting methodologies. We explore the topic of mixing carbon with other problems in developing carbon accounting methodologies

We analyze current approaches to carbon accounting for removed carbon sold on carbon markets, focusing on carbon crediting under the framing of a remaining carbon budget, the issue of durability, and approaches to accounting methodologies. We explore the topic of mixing carbon with other problems in developing carbon accounting methodologies and highlight the open policy questions. We conclude with a suggested framework for accounting for carbon removal accounting that simplifies climate action and enables a world with negative carbon emissions.

ContributorsArcusa, Stéphanie (Author) / Lackner, Klaus (Author) / Page, Robert (Author) / Sriramprasad, Vishrudh (Author) / Hagood, Emily (Author) / Center for Negative Carbon Emissions (Contributor)
Created2022-11-01
172390-Thumbnail Image.png
Description

This document details a conceptual Framework for the Certification of Carbon Sequestration (FCCS). It is based on a system designed to support negative emissions. It provides the minimum requirements for the development of carbon sequestration standards and certificates of carbon sequestration. It allows the certification of standards so that they

This document details a conceptual Framework for the Certification of Carbon Sequestration (FCCS). It is based on a system designed to support negative emissions. It provides the minimum requirements for the development of carbon sequestration standards and certificates of carbon sequestration. It allows the certification of standards so that they in turn produce certification of removed carbon that authenticates durability and verifiability. The framework (i) identifies an organizational structure for the certification system, (ii) clarifies the responsibility of participating entities, (iii) provides certificate designs and usages, (iv) details the requirements to develop measurement protocols, (v) provides mechanisms to support a long-term industry, and (vi) outlines a vision towards durable storage.

ContributorsArcusa, Stéphanie (Author) / Lackner, Klaus (Author) / Hagood, Emily (Author) / Page, Robert (Author) / Sriramprasad, Vishrudh (Author)
Created2022-12-05
187300-Thumbnail Image.png
Description
The excessive use of fossil fuels over the last few centuries has led to unprecedented changes in climate and a steady increase in the average surface global temperatures. Direct Air Capture(DAC) aims to capture CO2 directly from the atmosphere and alleviate some of the adverse effects of climate change. This

The excessive use of fossil fuels over the last few centuries has led to unprecedented changes in climate and a steady increase in the average surface global temperatures. Direct Air Capture(DAC) aims to capture CO2 directly from the atmosphere and alleviate some of the adverse effects of climate change. This dissertation focuses on methodologies to make advanced functional materials that show good potential to be used as DAC sorbents. Details on sorbent material synthesis and post-synthesis methods to obtain high surface area morphologies are described in detail. First, by incorporating K2CO3 into activated carbon (AC) fiber felts, the sorption kinetics was significantly improved by increasing the surface area of K2CO3 in contact with air. The AC-K2CO3 fiber composite felts are flexible, cheap, easy to manufacture, chemically stable, and show excellent DAC capacity and (de)sorption rates, with stable performance up to ten cycles. The best composite felts collected an average of 478 µmol of CO2 per gram of composite during 4 h of exposure to ambient (24% RH) air that had a CO2 concentration of 400-450 ppm over 10 cycles. Secondly, incorporating the amino acid L-arginine (L-Arg) into a poly(vinyl alcohol) (PVA) nanofiber support structure, created porous substrates with very high surface areas of L-Arg available for CO2 sorption. The bio-inspired PVA-Arg nanofiber composites are flexible and show excellent DAC performance compared to bulk L-Arg. The nanofiber composites are fabricated from an electrospinning process using an aqueous polymer solution. High ambient humidity levels improve sorption performance significantly. The best performing nanofiber composite collected 542 µmol of CO2 per gram of composite during 2 h of exposure to ambient, high humidity (100% RH) air that had a CO2 concentration of 400-450 ppm. Finally, poly(vinyl guanidine) (PVG) polymer was synthesized and tested for sorption performance. The fabrication of PVG nanofibers, divinyl benzene crosslinked PVG beads and glutaraldehyde crosslinked PVG were demonstrated. The sorption performance of the fabricated sorbents were tested with the glutaraldehyde crosslinked PVG having a dynamic sorption capacity of over 1 mmol of CO2 per gram of polymer in 3 h. The sorption capability of liquid PVG was also explored.
ContributorsModayil Korah, Mani (Author) / Green, Matthew D (Thesis advisor) / Lackner, Klaus (Committee member) / Long, Timothy E (Committee member) / Thomas, Marylaura L (Committee member) / Jin, Kailong (Committee member) / Arizona State University (Publisher)
Created2024
171967-Thumbnail Image.png
Description
Climate change poses a serious challenge humankind. Society’s reliance on fossil fuels raises atmospheric CO2 concentrations causing global warming. Already, the planet has warmed by 1.1 °C making it nearly impossible to heed the advice of the IPCC (2022) and prevent warming in excess of 1.5 °C by 2050. Even

Climate change poses a serious challenge humankind. Society’s reliance on fossil fuels raises atmospheric CO2 concentrations causing global warming. Already, the planet has warmed by 1.1 °C making it nearly impossible to heed the advice of the IPCC (2022) and prevent warming in excess of 1.5 °C by 2050. Even the current excess of CO2 in the atmosphere poses significant risks. Direct air capture (DAC) of CO2 offers one of the most scalable options to the drawdown of carbon. DAC can collect CO2 that is already diluted into the atmosphere for disposal or utilization. Central to most DAC are sorbents, i.e., materials that bind and release CO2 in a capture and release cycle. There are sorbents that cycle through a temperature swing. Others use a moisture swing, or a pressure swing or combinations of all of them. Since DAC is still a nascent technology, advancement of sorbents is an important part of DAC development. There is a nearly infinite combination of possible sorbents and form factors of sorbents that can be deployed in many different variations of DAC. Our goal is to develop a methodology for characterizing sorbents to facilitate rational choices among different options. Good sorbent characteristics include high capacity, fast sorption and desorption kinetics, low energy need for unloading, and longevity. This work presents the development of a systematic approach to evaluate sorbents from the milligram to tonne scale focusing on the important characteristics mentioned above. The work identified a good temperature swing sorbent whose characterization moved from the mg to kg scale without loss in performance. This work represents a first step in systematizing sorbent characterization for rational sorbent development programs.
ContributorsStangherlin Barbosa, Thiago (Author) / Lackner, Klaus (Thesis advisor) / Cirucci, John (Committee member) / Dirks, Gary (Committee member) / Arizona State University (Publisher)
Created2022
158011-Thumbnail Image.png
Description
Mobile sources emit a number of different gases including nitrogen oxides (NOx) and volatile organic compounds (VOCs) as well as particulate matter (PM10, PM2.5). As a result, mobile sources are major contributors to urban air pollution and can be the dominant source of some local air pollution problems. In general,

Mobile sources emit a number of different gases including nitrogen oxides (NOx) and volatile organic compounds (VOCs) as well as particulate matter (PM10, PM2.5). As a result, mobile sources are major contributors to urban air pollution and can be the dominant source of some local air pollution problems. In general, mobile sources are divided into two categories: on-road mobile sources and non-road mobile sources. In Maricopa County, the Maricopa County Air Quality Department prepares inventories of all local sources [11], [12]. These inventories report that for Maricopa County, on-road mobile sources emit about 23% of total PM2.5 annually, 58% of the total NOx, and 8% of the total VOCs. To understand how future changes how vehicles might impact local air quality, this work focuses on comparing current inventories of PM2.5, black carbon (BC), NOx, and VOCs to what may be expected emissions in future years based on different scenarios of penetration of hybrid gas-electric vehicles (HEV) and electric vehicles (EV) as well as continued reduction in emissions from conventional internal combustion (IC) vehicles. A range of scenarios has been developed as part of this thesis based on literature reports [6], [8], air quality improvement plan documentation [5], projected vehicle sales and registration [3], [4], as well as using EPA’s Motor Vehicle Emission Simulator (MOVES) [9]. Thus, these created scenarios can be used to evaluate what factors will make the most significant difference in improving local air quality through reduced emissions of PM2.5, BC, NOx and VOCs in the future. Specifically, the impact of a greater fraction of cleaner alternative vehicles such as hybrid-electric and electric vehicles will be compared to the impact of continual reductions in emissions from traditional internal combustion vehicles to reducing urban air pollution emissions in Maricopa County.
ContributorsAlboaijan, Fahad A M S (Author) / Fraser, Matthew (Thesis advisor) / Andino, Jean (Committee member) / Lackner, Klaus (Committee member) / Arizona State University (Publisher)
Created2020