Matching Items (2)

155774-Thumbnail Image.png

Computer Vision from Spatial-Multiplexing Cameras at Low Measurement Rates

Description

In UAVs and parking lots, it is typical to first collect an enormous number of pixels using conventional imagers. This is followed by employment of expensive methods to compress by

In UAVs and parking lots, it is typical to first collect an enormous number of pixels using conventional imagers. This is followed by employment of expensive methods to compress by throwing away redundant data. Subsequently, the compressed data is transmitted to a ground station. The past decade has seen the emergence of novel imagers called spatial-multiplexing cameras, which offer compression at the sensing level itself by providing an arbitrary linear measurements of the scene instead of pixel-based sampling. In this dissertation, I discuss various approaches for effective information extraction from spatial-multiplexing measurements and present the trade-offs between reliability of the performance and computational/storage load of the system. In the first part, I present a reconstruction-free approach to high-level inference in computer vision, wherein I consider the specific case of activity analysis, and show that using correlation filters, one can perform effective action recognition and localization directly from a class of spatial-multiplexing cameras, called compressive cameras, even at very low measurement rates of 1\%. In the second part, I outline a deep learning based non-iterative and real-time algorithm to reconstruct images from compressively sensed (CS) measurements, which can outperform the traditional iterative CS reconstruction algorithms in terms of reconstruction quality and time complexity, especially at low measurement rates. To overcome the limitations of compressive cameras, which are operated with random measurements and not particularly tuned to any task, in the third part of the dissertation, I propose a method to design spatial-multiplexing measurements, which are tuned to facilitate the easy extraction of features that are useful in computer vision tasks like object tracking. The work presented in the dissertation provides sufficient evidence to high-level inference in computer vision at extremely low measurement rates, and hence allows us to think about the possibility of revamping the current day computer systems.

Contributors

Agent

Created

Date Created
  • 2017

151092-Thumbnail Image.png

Feature extraction from compressive cameras with application to activity recognition

Description

Recent advances in camera architectures and associated mathematical representations now enable compressive acquisition of images and videos at low data-rates. While most computer vision applications of today are composed of

Recent advances in camera architectures and associated mathematical representations now enable compressive acquisition of images and videos at low data-rates. While most computer vision applications of today are composed of conventional cameras, which collect a large amount redundant data and power hungry embedded systems, which compress the collected data for further processing, compressive cameras offer the advantage of direct acquisition of data in compressed domain and hence readily promise to find applicability in computer vision, particularly in environments hampered by limited communication bandwidths. However, despite the significant progress in theory and methods of compressive sensing, little headway has been made in developing systems for such applications by exploiting the merits of compressive sensing. In such a setting, we consider the problem of activity recognition, which is an important inference problem in many security and surveillance applications. Since all successful activity recognition systems involve detection of human, followed by recognition, a potential fully functioning system motivated by compressive camera would involve the tracking of human, which requires the reconstruction of atleast the initial few frames to detect the human. Once the human is tracked, the recognition part of the system requires only the features to be extracted from the tracked sequences, which can be the reconstructed images or the compressed measurements of such sequences. However, it is desirable in resource constrained environments that these features be extracted from the compressive measurements without reconstruction. Motivated by this, in this thesis, we propose a framework for understanding activities as a non-linear dynamical system, and propose a robust, generalizable feature that can be extracted directly from the compressed measurements without reconstructing the original video frames. The proposed feature is termed recurrence texture and is motivated from recurrence analysis of non-linear dynamical systems. We show that it is possible to obtain discriminative features directly from the compressed stream and show its utility in recognition of activities at very low data rates.

Contributors

Agent

Created

Date Created
  • 2012