Matching Items (67)

137359-Thumbnail Image.png

Microglia Motility in the Context of a PDGF Induced Glioblastoma

Description

Tumor associated microglia-and-macrophages (TAMS) may constitute up to 30% of the composition of glioblastoma. Through mechanisms not well understood, TAMS are thought to aid the progression and invasiveness of glioblastoma.

Tumor associated microglia-and-macrophages (TAMS) may constitute up to 30% of the composition of glioblastoma. Through mechanisms not well understood, TAMS are thought to aid the progression and invasiveness of glioblastoma. In an effort to investigate properties of TAMS in the context of glioblastoma, I utilized data from a PDGF-driven rat model of glioma that highly resembles human glioblastoma. Data was collected from time-lapse microscopy of slice cultures that differentially labels glioma cells and also microglia cells within and outside the tumor microenvironment. Here I show that microglia localize in the tumor and move with greater speed and migration than microglia outside the tumor environment. Following previous studies that show microglia can be characterized by certain movement distributions based on environmental influences, in this study, the majority of microglia movement was characterized by a power law distribution with a characteristic power law exponent lower than outside the tumor region. This indicates that microglia travel at greater distances within the tumor region than outside of it.

Contributors

Agent

Created

Date Created
  • 2013-12

136857-Thumbnail Image.png

Estimating GL-261 cell growth: A murine model for Glioblastoma Multiforme

Description

Glioblastoma Multiforme (GBM) is an aggressive and deadly form of brain cancer with a median survival time of about a year with treatment. Due to the aggressive nature of these

Glioblastoma Multiforme (GBM) is an aggressive and deadly form of brain cancer with a median survival time of about a year with treatment. Due to the aggressive nature of these tumors and the tendency of gliomas to follow white matter tracks in the brain, each tumor mass has a unique growth pattern. Consequently it is difficult for neurosurgeons to anticipate where the tumor will spread in the brain, making treatment planning difficult. Archival patient data including MRI scans depicting the progress of tumors have been helpful in developing a model to predict Glioblastoma proliferation, but limited scans per patient make the tumor growth rate difficult to determine. Furthermore, patient treatment between scan points can significantly compound the challenge of accurately predicting the tumor growth. A partnership with Barrow Neurological Institute has allowed murine studies to be conducted in order to closely observe tumor growth and potentially improve the current model to more closely resemble intermittent stages of GBM growth without treatment effects.

Contributors

Created

Date Created
  • 2014-05

137666-Thumbnail Image.png

Wada basins of attraction in diffeomorphic maps

Description

Dividing the plane in half leaves every border point of one region a border point of both regions. Can we divide up the plane into three or more regions such

Dividing the plane in half leaves every border point of one region a border point of both regions. Can we divide up the plane into three or more regions such that any point on the boundary of at least one region is on the border of all the regions? In fact, it is possible to design a dynamical system for which the basins of attractions have this Wada property. In certain circumstances, both the Hénon map, a simple system, and the forced damped pendulum, a physical model, produce Wada basins.

Contributors

Created

Date Created
  • 2013-05

137818-Thumbnail Image.png

Lagrangian Skeletons in Hurricane Katrina

Description

This thesis shows analyses of mixing and transport patterns associated with Hurricane Katrina as it hit the United States in August of 2005. Specifically, by applying atmospheric velocity information from

This thesis shows analyses of mixing and transport patterns associated with Hurricane Katrina as it hit the United States in August of 2005. Specifically, by applying atmospheric velocity information from the Weather Research and Forecasting System, finite-time Lyapunov exponents have been computed and the Lagrangian Coherent Structures have been identified. The chaotic dynamics of material transport induced by the hurricane are results from these structures within the flow. Boundaries of the coherent structures are highlighted by the FTLE field. Individual particle transport within the hurricane is affected by the location of these boundaries. In addition to idealized fluid particles, we also studied inertial particles which have finite size and inertia. Basing on established Maxey-Riley equations of the dynamics of particles of finite size, we obtain a reduced equation governing the position process. Using methods derived from computer graphics, we identify maximizers of the FTLE field. Following and applying these ideas, we analyze the dynamics of inertial particle transport within Hurricane Katrina, through comparison of trajectories of dierent sized particles and by pinpointing the location of the Lagrangian Coherent Structures.

Contributors

Agent

Created

Date Created
  • 2012-12

137687-Thumbnail Image.png

Edge Detection from Non-Uniform Fourier Data via a Modified Method of Convolutional Gridding

Description

The recovery of edge information in the physical domain from non-uniform Fourier data is of importance in a variety of applications, particularly in the practice of magnetic resonance imaging (MRI).

The recovery of edge information in the physical domain from non-uniform Fourier data is of importance in a variety of applications, particularly in the practice of magnetic resonance imaging (MRI). Edge detection can be important as a goal in and of itself in the identification of tissue boundaries such as those defining the locations of tumors. It can also be an invaluable tool in the amelioration of the negative effects of the Gibbs phenomenon on reconstructions of functions with discontinuities or images in multi-dimensions with internal edges. In this thesis we develop a novel method for recovering edges from non-uniform Fourier data by adapting the "convolutional gridding" method of function reconstruction. We analyze the behavior of the method in one dimension and then extend it to two dimensions on several examples.

Contributors

Agent

Created

Date Created
  • 2013-05

137847-Thumbnail Image.png

Modeling Brain Tumors: Simulating individual Patient Cases of Glioblastoma Multiforme

Description

Glioblastoma multiforme (GBMs) is the most prevalent brain tumor type and causes approximately 40% of all non-metastic primary tumors in adult patients [1]. GBMs are malignant, grade-4 brain tumors, the

Glioblastoma multiforme (GBMs) is the most prevalent brain tumor type and causes approximately 40% of all non-metastic primary tumors in adult patients [1]. GBMs are malignant, grade-4 brain tumors, the most aggressive classication as established by the World Health Organization and are marked by their low survival rate; the median survival time is only twelve months from initial diagnosis: Patients who live more than three years are considered long-term survivors [2]. GBMs are highly invasive and their diffusive growth pattern makes it impossible to remove the tumors by surgery alone [3]. The purpose of this paper is to use individual patient data to parameterize a model of GBMs that allows for data on tumor growth and development to be captured on a clinically relevant time scale. Such an endeavor is the rst step to a clinically applicable predictions of GBMs. Previous research has yielded models that adequately represent the development of GBMs, but they have not attempted to follow specic patient cases through the entire tumor process. Using the model utilized by Kostelich et al. [4], I will attempt to redress this deciency. In doing so, I will improve upon a family of models that can be used to approximate the time of development and/or structure evolution in GBMs. The eventual goal is to incorporate Magnetic Resonance Imaging (MRI) data into a parameterized model of GBMs in such a way that it can be used clinically to predict tumor growth and behavior. Furthermore, I hope to come to a denitive conclusion as to the accuracy of the Koteslich et al. model throughout the development of GBMs tumors.

Contributors

Agent

Created

Date Created
  • 2012-12

137108-Thumbnail Image.png

FOURFUN: A new system for automatic computations using Fourier expansions

Description

Using object-oriented programming in MATLAB, a collection of functions, named Fourfun, has been created to allow quick and accurate approximations of periodic functions with Fourier expansions. To increase efficiency and

Using object-oriented programming in MATLAB, a collection of functions, named Fourfun, has been created to allow quick and accurate approximations of periodic functions with Fourier expansions. To increase efficiency and reduce the number of computations of the Fourier transform, Fourfun automatically determines the number of nodes necessary for representations that are accurate to close to machine precision. Common MATLAB functions have been overloaded to keep the syntax of the Fourfun class as consistent as possible with the general MATLAB syntax. We show that the system can be used to efficiently solve several differential equations. Comparisons with Chebfun, a similar system based on Chebyshev polynomial approximations, are provided.

Contributors

Created

Date Created
  • 2014-05

137413-Thumbnail Image.png

Predicting Glioblastoma Growth Using a Poisson Process

Description

In this research we consider stochastic models of Glioblastoma Multiforme brain tumors. We first look at a model by K. Swanson et al., which describes the dynamics as random diffusion

In this research we consider stochastic models of Glioblastoma Multiforme brain tumors. We first look at a model by K. Swanson et al., which describes the dynamics as random diffusion plus deterministic logistic growth. We introduce a stochastic component in the logistic growth in the form of a random growth rate defined by a Poisson process. We show that this stochastic logistic growth model leads to a more accurate evaluation of the tumor growth compared its deterministic counterpart. We also discuss future plans to incorporate individual patient geometry, extend the model to three dimensions and to incorporate effects of different treatments into our model, in collaboration with a local hospital.

Contributors

Created

Date Created
  • 2013-12

137504-Thumbnail Image.png

Edge Informed Fourier Reconstruction from Non-Uniform Spectral Data

Description

The reconstruction of piecewise smooth functions from non-uniform Fourier data arises in sensing applications such as magnetic resonance imaging (MRI). This thesis presents a new polynomial based resampling method (PRM)

The reconstruction of piecewise smooth functions from non-uniform Fourier data arises in sensing applications such as magnetic resonance imaging (MRI). This thesis presents a new polynomial based resampling method (PRM) for 1-dimensional problems which uses edge information to recover the Fourier transform at its integer coefficients, thereby enabling the use of the inverse fast Fourier transform algorithm. By minimizing the error of the PRM approximation at the sampled Fourier modes, the PRM can also be used to improve on initial edge location estimates. Numerical examples show that using the PRM to improve on initial edge location estimates and then taking of the PRM approximation of the integer frequency Fourier coefficients is a viable way to reconstruct the underlying function in one dimension. In particular, the PRM is shown to converge more quickly and to be more robust than current resampling techniques used in MRI, and is particularly amenable to highly irregular sampling patterns.

Contributors

Created

Date Created
  • 2013-05

137507-Thumbnail Image.png

Lagrangian Transport of Inertial Particles in Hurricane Katrina

Description

Using weather data from the Weather Research and Forecasting model (WRF), we analyze the transport of inertial particles in Hurricane Katrina in order to identify coherent patterns of motion. For

Using weather data from the Weather Research and Forecasting model (WRF), we analyze the transport of inertial particles in Hurricane Katrina in order to identify coherent patterns of motion. For our analysis, we choose a Lagrangian approach instead of an Eulerian approach because the Lagrangian approach is objective and frame-independent, and gives results which are better defined. In particular, we locate Lagrangian Coherent Structures (LCS), which are smooth sets of fluid particles which are locally most hyperbolic (either attracting or repelling). We implement a variational method for locating LCS and compare the results to previous computation of LCS using Finite-Time Lyapunov Exponents (FTLE) to identify regions of high stretching in the fluid flow.

Contributors

Agent

Created

Date Created
  • 2013-05