Matching Items (42)

132633-Thumbnail Image.png

A High Order Numerical Scheme for Wave Propagation Problems

Description

The physics of waves control most of the world, in multiple forms, such as electromagnetic waves. Mathematicians and physicists have developed equations which describe the patterns in which waves evolve over time, while moving through space. Due to their partial

The physics of waves control most of the world, in multiple forms, such as electromagnetic waves. Mathematicians and physicists have developed equations which describe the patterns in which waves evolve over time, while moving through space. Due to their partial differential form, solutions to these equations must be approximated. This study introduces a new numerical scheme to perform the approximation which is highly stable and computationally efficient. This numerical scheme is formulated with respect to Maxwell’s equations, employing spatial and temporal staggering to implement a fourth-order phase accuracy. It is then compared to the traditional Yee scheme and the Runge-Kutta 3 scheme in one-dimensional applications, revealing a similar accuracy to the Runge-Kutta 3 scheme while requiring less computations per time step. Simulations are then performed in the two-dimensional case. First, no boundary conditions are implemented, causing reflection at the edge of the spatial domain. Next, the simulation is conducted while employing absorbing boundary conditions, simulating wave propagation over an infinite spatial domain. These results are compared to the results of a large domain simulation, in which the wave propagation does not reach the boundaries. Comparing the simulations, it is concluded that the numerical scheme is stable and highly accurate when employing absorbing boundary conditions. Finally, the scheme is tested in two dimensions with wave propagation through nonlinear media, as opposed to the prior simulations which were performed as if in a vacuum. After performing spectral analysis on the resulting waves after a long-time domain simulation, the resulting angular frequencies match those expected from theory. Therefore, the scheme is concluded to be powerful in one-dimensional, two-dimensional, and nonlinear simulations, all while being computationally efficient.

Contributors

Agent

Created

Date Created
2019-05

133171-Thumbnail Image.png

Volume Distributions of Metastatic Brain Tumors

Description

Magnetic resonance imaging (MRI) data of metastatic brain cancer patients at the Barrow Neurological Institute sparked interest in the radiology department due to the possibility that tumor size distributions might mimic a power law or an exponential distribution. In order

Magnetic resonance imaging (MRI) data of metastatic brain cancer patients at the Barrow Neurological Institute sparked interest in the radiology department due to the possibility that tumor size distributions might mimic a power law or an exponential distribution. In order to consider the question regarding the growth trends of metastatic brain tumors, this thesis analyzes the volume measurements of the tumor sizes from the BNI data and attempts to explain such size distributions through mathematical models. More specifically, a basic stochastic cellular automaton model is used and has three-dimensional results that show similar size distributions of those of the BNI data. Results of the models are investigated using the likelihood ratio test suggesting that, when the tumor volumes are measured based on assuming tumor sphericity, the tumor size distributions significantly mimic the power law over an exponential distribution.

Contributors

Agent

Created

Date Created
2018-12

134565-Thumbnail Image.png

A Numerical and Analytical Study of Wave Reflection and Transmission across the Tropopause

Description

A numerical study of wave-induced momentum transport across the tropopause in the presence of a stably stratified thin inversion layer is presented and discussed. This layer consists of a sharp increase in static stability within the tropopause. The wave propagation

A numerical study of wave-induced momentum transport across the tropopause in the presence of a stably stratified thin inversion layer is presented and discussed. This layer consists of a sharp increase in static stability within the tropopause. The wave propagation is modeled by numerically solving the Taylor-Goldstein equation, which governs the dynamics of internal waves in stably stratified shear flows. The waves are forced by a flow over a bell shaped mountain placed at the lower boundary of the domain. A perfectly radiating condition based on the group velocity of mountain waves is imposed at the top to avoid artificial wave reflection. A validation for the numerical method through comparisons with the corresponding analytical solutions will be provided. Then, the method is applied to more realistic profiles of the stability to study the impact of these profiles on wave propagation through the tropopause.

Contributors

Created

Date Created
2017-05

133957-Thumbnail Image.png

Statistical Properties of Coherent Structures in Two Dimensional Turbulence

Description

Coherent vortices are ubiquitous structures in natural flows that affect mixing and transport of substances and momentum/energy. Being able to detect these coherent structures is important for pollutant mitigation, ecological conservation and many other aspects. In recent years, mathematical criteria

Coherent vortices are ubiquitous structures in natural flows that affect mixing and transport of substances and momentum/energy. Being able to detect these coherent structures is important for pollutant mitigation, ecological conservation and many other aspects. In recent years, mathematical criteria and algorithms have been developed to extract these coherent structures in turbulent flows. In this study, we will apply these tools to extract important coherent structures and analyze their statistical properties as well as their implications on kinematics and dynamics of the flow. Such information will aide representation of small-scale nonlinear processes that large-scale models of natural processes may not be able to resolve.

Contributors

Created

Date Created
2018-05

133911-Thumbnail Image.png

Computations on Spherical Domains

Description

The main goal of this project is to study approximations of functions on circular and spherical domains using the cubed sphere discretization. On each subdomain, the function is approximated by windowed Fourier expansions. Of particular interest is the dependence of

The main goal of this project is to study approximations of functions on circular and spherical domains using the cubed sphere discretization. On each subdomain, the function is approximated by windowed Fourier expansions. Of particular interest is the dependence of accuracy on the different choices of windows and the size of the overlapping regions. We use Matlab to manipulate each of the variables involved in these computations as well as the overall error, thus enabling us to decide which specific values produce the most accurate results. This work is motivated by problems arising in atmospheric research.

Contributors

Created

Date Created
2018-05

135355-Thumbnail Image.png

Stochastic parameterization of the proliferation-diffusion model of brain cancer in a Murine model

Description

Glioblastoma multiforme (GBM) is a malignant, aggressive and infiltrative cancer of the central nervous system with a median survival of 14.6 months with standard care. Diagnosis of GBM is made using medical imaging such as magnetic resonance imaging (MRI) or

Glioblastoma multiforme (GBM) is a malignant, aggressive and infiltrative cancer of the central nervous system with a median survival of 14.6 months with standard care. Diagnosis of GBM is made using medical imaging such as magnetic resonance imaging (MRI) or computed tomography (CT). Treatment is informed by medical images and includes chemotherapy, radiation therapy, and surgical removal if the tumor is surgically accessible. Treatment seldom results in a significant increase in longevity, partly due to the lack of precise information regarding tumor size and location. This lack of information arises from the physical limitations of MR and CT imaging coupled with the diffusive nature of glioblastoma tumors. GBM tumor cells can migrate far beyond the visible boundaries of the tumor and will result in a recurring tumor if not killed or removed. Since medical images are the only readily available information about the tumor, we aim to improve mathematical models of tumor growth to better estimate the missing information. Particularly, we investigate the effect of random variation in tumor cell behavior (anisotropy) using stochastic parameterizations of an established proliferation-diffusion model of tumor growth. To evaluate the performance of our mathematical model, we use MR images from an animal model consisting of Murine GL261 tumors implanted in immunocompetent mice, which provides consistency in tumor initiation and location, immune response, genetic variation, and treatment. Compared to non-stochastic simulations, stochastic simulations showed improved volume accuracy when proliferation variability was high, but diffusion variability was found to only marginally affect tumor volume estimates. Neither proliferation nor diffusion variability significantly affected the spatial distribution accuracy of the simulations. While certain cases of stochastic parameterizations improved volume accuracy, they failed to significantly improve simulation accuracy overall. Both the non-stochastic and stochastic simulations failed to achieve over 75% spatial distribution accuracy, suggesting that the underlying structure of the model fails to capture one or more biological processes that affect tumor growth. Two biological features that are candidates for further investigation are angiogenesis and anisotropy resulting from differences between white and gray matter. Time-dependent proliferation and diffusion terms could be introduced to model angiogenesis, and diffusion weighed imaging (DTI) could be used to differentiate between white and gray matter, which might allow for improved estimates brain anisotropy.

Contributors

Agent

Created

Date Created
2016-05

135377-Thumbnail Image.png

Practicality of the Convolutional Solution Method of the Polarization Estimation Inverse Problem for Solid Oxide Fuel Cells

Description

A specific species of the genus Geobacter exhibits useful electrical properties when processing a molecule often found in waste water. A team at ASU including Dr Cèsar Torres and Dr Sudeep Popat used that species to create a special type

A specific species of the genus Geobacter exhibits useful electrical properties when processing a molecule often found in waste water. A team at ASU including Dr Cèsar Torres and Dr Sudeep Popat used that species to create a special type of solid oxide fuel cell we refer to as a microbial fuel cell. Identification of possible chemical processes and properties of the reactions used by the Geobacter are investigated indirectly by taking measurements using Electrochemical Impedance Spectroscopy of the electrode-electrolyte interface of the microbial fuel cell to obtain the value of the fuel cell's complex impedance at specific frequencies. Investigation of the multiple polarization processes which give rise to measured impedance values is difficult to do directly and so examination of the distribution function of relaxation times (DRT) is considered instead. The DRT is related to the measured complex impedance values using a general, non-physical equivalent circuit model. That model is originally given in terms of a Fredholm integral equation with a non-square integrable kernel which makes the inverse problem of determining the DRT given the impedance measurements an ill-posed problem. The original integral equation is rewritten in terms of new variables into an equation relating the complex impedance to the convolution of a function based upon the original integral kernel and a related but separate distribution function which we call the convolutional distribution function. This new convolutional equation is solved by reducing the convolution to a pointwise product using the Fourier transform and then solving the inverse problem by pointwise division and application of a filter function (equivalent to regularization). The inverse Fourier transform is then taken to get the convolutional distribution function. In the literature the convolutional distribution function is then examined and certain values of a specific, less general equivalent circuit model are calculated from which aspects of the original chemical processes are derived. We attempted to instead directly determine the original DRT from the calculated convolutional distribution function. This method proved to be practically less useful due to certain values determined at the time of experiment which meant the original DRT could only be recovered in a window which would not normally contain the desired information for the original DRT. This limits any attempt to extend the solution for the convolutional distribution function to the original DRT. Further research may determine a method for interpreting the convolutional distribution function without an equivalent circuit model as is done with the regularization method used to solve directly for the original DRT.

Contributors

Agent

Created

Date Created
2016-05

135327-Thumbnail Image.png

A New Numerical Method Based on Leapfrog for Atmospheric and Ocean Modeling

Description

A semi-implicit, fourth-order time-filtered leapfrog numerical scheme is investigated for accuracy and stability, and applied to several test cases, including one-dimensional advection and diffusion, the anelastic equations to simulate the Kelvin-Helmholtz instability, and the global shallow water spectral model to

A semi-implicit, fourth-order time-filtered leapfrog numerical scheme is investigated for accuracy and stability, and applied to several test cases, including one-dimensional advection and diffusion, the anelastic equations to simulate the Kelvin-Helmholtz instability, and the global shallow water spectral model to simulate the nonlinear evolution of twin tropical cyclones. The leapfrog scheme leads to computational modes in the solutions to highly nonlinear systems, and time-filters are often used to damp these modes. The proposed filter damps the computational modes without appreciably degrading the physical mode. Its performance in these metrics is superior to the second-order time-filtered leapfrog scheme developed by Robert and Asselin.

Contributors

Created

Date Created
2016-05

134943-Thumbnail Image.png

Naïve Bayes Classification for Analyzing Prostate Cancer Treatment Outcomes

Description

Prostate cancer is the second most common kind of cancer in men. Fortunately, it has a 99% survival rate. To achieve such a survival rate, a variety of aggressive therapies are used to treat prostate cancers that are caught early.

Prostate cancer is the second most common kind of cancer in men. Fortunately, it has a 99% survival rate. To achieve such a survival rate, a variety of aggressive therapies are used to treat prostate cancers that are caught early. Androgen deprivation therapy (ADT) is a therapy that is given in cycles to patients. This study attempted to analyze what factors in a group of 79 patients caused them to stick with or discontinue the treatment. This was done using naïve Bayes classification, a machine-learning algorithm. The usage of this algorithm identified high testosterone as an indicator of a patient persevering with the treatment, but failed to produce statistically significant high rates of prediction.

Contributors

Agent

Created

Date Created
2016-12

136857-Thumbnail Image.png

Estimating GL-261 cell growth: A murine model for Glioblastoma Multiforme

Description

Glioblastoma Multiforme (GBM) is an aggressive and deadly form of brain cancer with a median survival time of about a year with treatment. Due to the aggressive nature of these tumors and the tendency of gliomas to follow white matter

Glioblastoma Multiforme (GBM) is an aggressive and deadly form of brain cancer with a median survival time of about a year with treatment. Due to the aggressive nature of these tumors and the tendency of gliomas to follow white matter tracks in the brain, each tumor mass has a unique growth pattern. Consequently it is difficult for neurosurgeons to anticipate where the tumor will spread in the brain, making treatment planning difficult. Archival patient data including MRI scans depicting the progress of tumors have been helpful in developing a model to predict Glioblastoma proliferation, but limited scans per patient make the tumor growth rate difficult to determine. Furthermore, patient treatment between scan points can significantly compound the challenge of accurately predicting the tumor growth. A partnership with Barrow Neurological Institute has allowed murine studies to be conducted in order to closely observe tumor growth and potentially improve the current model to more closely resemble intermittent stages of GBM growth without treatment effects.

Contributors

Created

Date Created
2014-05