Matching Items (21)

130263-Thumbnail Image.png

Advances in Thermionic Energy Conversion Through Single-Crystal n-Type Diamond

Description

Thermionic energy conversion, a process that allows direct transformation of thermal to electrical energy, presents a means of efficient electrical power generation as the hot and cold side of the

Thermionic energy conversion, a process that allows direct transformation of thermal to electrical energy, presents a means of efficient electrical power generation as the hot and cold side of the corresponding heat engine are separated by a vacuum gap. Conversion efficiencies approaching those of the Carnot cycle are possible if material parameters of the active elements at the converter, i.e., electron emitter or cathode and collector or anode, are optimized for operation in the desired temperature range.

These parameters can be defined through the law of Richardson–Dushman that quantifies the ability of a material to release an electron current at a certain temperature as a function of the emission barrier or work function and the emission or Richardson constant. Engineering materials to defined parameter values presents the key challenge in constructing practical thermionic converters. The elevated temperature regime of operation presents a constraint that eliminates most semiconductors and identifies diamond, a wide band-gap semiconductor, as a suitable thermionic material through its unique material properties. For its surface, a configuration can be established, the negative electron affinity, that shifts the vacuum level below the conduction band minimum eliminating the surface barrier for electron emission.

In addition, its ability to accept impurities as donor states allows materials engineering to control the work function and the emission constant. Single-crystal diamond electrodes with nitrogen levels at 1.7 eV and phosphorus levels at 0.6 eV were prepared by plasma-enhanced chemical vapor deposition where the work function was controlled from 2.88 to 0.67 eV, one of the lowest thermionic work functions reported. This work function range was achieved through control of the doping concentration where a relation to the amount of band bending emerged. Upward band bending that contributed to the work function was attributed to surface states where lower doped homoepitaxial films exhibited a surface state density of ∼3 × 10[superscript 11] cm[superscript −2]. With these optimized doped diamond electrodes, highly efficient thermionic converters are feasible with a Schottky barrier at the diamond collector contact mitigated through operation at elevated temperatures.

Contributors

Agent

Created

Date Created
  • 2017-12-06

134642-Thumbnail Image.png

Trevor Van Engelhoven

Description

This project details the learning of processes in nanofabrication and sensor detection fields. We sought to apply this knowledge to develop a processing procedure to fabricate sensors used to detect

This project details the learning of processes in nanofabrication and sensor detection fields. We sought to apply this knowledge to develop a processing procedure to fabricate sensors used to detect high energy protons.  We seek to create such a sensor to be applied to aid Mayo Clinic’s Proton Beam Therapy center for cancer treatment through providing beam detection measurements. Developed plans would allow for proton beam detectors to be able to measure beam intensity and direction which would allow for more accurate beam treatments. Current detectors require much calibration and solid state detectors can’t withstand the high-energy exposure of the proton beam for long durations. By fabricating pixelated diamond sensors we expect to produce sensitive beam readings, while extending detector length time due to diamonds durable crystalline lattice. We report processing procedures for simple 2-3 contact detectors as well as more complex multi-contact pixelated sensors used for spatial resolution of the beam. Testing of simple sensors is additionally reported with successful radioactive source detection.

Contributors

Agent

Created

Date Created
  • 2016-12

131279-Thumbnail Image.png

Analysis of TiC at the diamond-titanium interface for diamond-based diode detectors via annealing and XPS

Description

In this project we are analyzing the diamond-titanium interface as it applies to diamond-based diode devices, including alpha particle, proton, and neutron detectors. This is done through the fabrication of

In this project we are analyzing the diamond-titanium interface as it applies to diamond-based diode devices, including alpha particle, proton, and neutron detectors. This is done through the fabrication of an O-terminated B-doped diamond sample with a 20 Å Ti / 10 Å Pt overlayer which was then annealed and examined via X-ray photoelectron spectroscopy (XPS). It was discovered that after annealing the sample at temperatures ranging from 400 C - 900 C that TiC was not formed at any point during this experiment. Possible reasons for this include a lack of sufficient titanium in order to form TiC and over oxygenating the diamond surface before the metal was deposited.

Contributors

Agent

Created

Date Created
  • 2020-05

Plasma enhanced atomic layer deposition of oxides on graphene

Description

Integration of dielectrics with graphene is essential to the fulfillment of graphene based electronic applications. While many dielectric deposition techniques exist, plasma enhanced atomic layer deposition (PEALD) is emerging as

Integration of dielectrics with graphene is essential to the fulfillment of graphene based electronic applications. While many dielectric deposition techniques exist, plasma enhanced atomic layer deposition (PEALD) is emerging as a technique to deposit ultrathin dielectric films with superior densities and interfaces. However, the degree to which PEALD on graphene can be achieved without plasma-induced graphene deterioration is not well understood. In this work, we investigate a range of plasma conditions across a single sample, characterizing both oxide growth and graphene deterioration using spectroscopic analysis and atomic force microscopy. Investigation of graphene and film quality produced by these conditions yields insight into plasma effects. Using a specially designed sample configuration, we achieve ultrathin (< 1 nm) aluminum oxide films atop graphene.

Contributors

Agent

Created

Date Created
  • 2016-05

130408-Thumbnail Image.png

Polarization Effects of GaN and AlGaN: Polarization Bound Charge, Band Bending, and Electronic Surface States

Description

GaN-based devices are currently limited by reliability issues such as gate leakage and current collapse, where the mechanisms responsible for degradation are closely related to the electronic surface state configuration.

GaN-based devices are currently limited by reliability issues such as gate leakage and current collapse, where the mechanisms responsible for degradation are closely related to the electronic surface state configuration. Therefore, understanding the electronic surface state configuration of GaN-based materials will help improve device performance. Since GaN has an inherent polarization, these materials are also subject to a bound polarization charge, which influences the electronic state configuration. In this study, the surface band bending of N-face GaN, Ga-face GaN, and Ga-face AlGaN was measured with x-ray photoemission spectroscopy after various cleaning steps to investigate the effects of the polarization. Despite the different surface bound charge on these materials, similar band bending was observed regardless of the magnitude or direction of the charge. Specifically, the band bending varied from −0.1 eV to 0.9 eV on these samples, which supported the models of a Fermi level pinning state at ∼0.4 eV to 0.8 eV below the conduction band. Based on available literature, we suggest this pinning state is indirectly evident of a nitrogen vacancy or gallium-dangling bond.

Contributors

Created

Date Created
  • 2014-12-01

Thermally enhanced photoinduced electron emission from nitrogen-doped diamond films on silicon substrates

Description

This work presents a spectroscopic study of the thermally enhanced photoinduced electron emission from nitrogen-doped diamond films prepared on p-type silicon substrates. It has been shown that photon-enhanced thermionic emission

This work presents a spectroscopic study of the thermally enhanced photoinduced electron emission from nitrogen-doped diamond films prepared on p-type silicon substrates. It has been shown that photon-enhanced thermionic emission (PETE) can substantially enhance thermionic emission intensity from a p-type semiconductor. An n-type diamond/p-type silicon structure was illuminated with 400–450 nm light, and the spectra of the emitted electrons showed a work function less than 2 eV and nearly an order of magnitude increase in emission intensity as the temperature was increased from ambient to ∼400 °C. Thermionic emission was negligible in this temperature range. The results are modeled in terms of contributions from PETE and direct photoelectron emission, and the large increase is consistent with a PETE component. The results indicate possible application in combined solar/thermal energy conversion devices.

Contributors

Agent

Created

Date Created
  • 2014-09-15

130423-Thumbnail Image.png

Surface band bending and band alignment of plasma enhanced atomic layer deposited dielectrics on Ga- and N-face gallium nitride

Description

The effects of surface pretreatment, dielectric growth, and post deposition annealing on interface electronic structure and polarization charge compensation of Ga- and N-face bulk GaN were investigated. The cleaning process

The effects of surface pretreatment, dielectric growth, and post deposition annealing on interface electronic structure and polarization charge compensation of Ga- and N-face bulk GaN were investigated. The cleaning process consisted of an ex-situ wet chemical NH[subscript 4]OH treatment and an in-situ elevated temperature NH[subscript 3] plasma process to remove carbon contamination, reduce oxygen coverage, and potentially passivate N-vacancy related defects. After the cleaning process, carbon contamination decreased below the x-ray photoemission spectroscopy detection limit, and the oxygen coverage stabilized at ∼1 monolayer on both Ga- and N-face GaN. In addition, Ga- and N-face GaN had an upward band bending of 0.8 ± 0.1 eV and 0.6 ± 0.1 eV, respectively, which suggested the net charge of the surface states and polarization bound charge was similar on Ga- and N-face GaN. Furthermore, three dielectrics (HfO[subscript 2], Al[subscript 2]O[subscript 3], and SiO[subscript 2]) were prepared by plasma-enhanced atomic layer deposition on Ga- or N-face GaN and annealed in N[subscript 2] ambient to investigate the effect of the polarization charge on the interface electronic structure and band offsets. The respective valence band offsets of HfO[subscript 2], Al[subscript 2]O[subscript 3], and SiO[subscript 2] with respect to Ga- and N-face GaN were 1.4 ± 0.1, 2.0 ± 0.1, and 3.2 ± 0.1 eV, regardless of dielectric thickness. The corresponding conduction band offsets were 1.0 ± 0.1, 1.3 ± 0.1, and 2.3 ± 0.1 eV, respectively. Experimental band offset results were consistent with theoretical calculations based on the charge neutrality level model. The trend of band offsets for dielectric/GaN interfaces was related to the band gap and/or the electronic part of the dielectric constant. The effect of polarization charge on band offset was apparently screened by the dielectric-GaN interface states.

Contributors

Created

Date Created
  • 2014-09-28

130266-Thumbnail Image.png

Temperature dependent simulation of diamond depleted Schottky PIN diodes

Description

Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The

Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco[superscript ®] Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures.

Contributors

Created

Date Created
  • 2016-06-08

154972-Thumbnail Image.png

Developing ohmic contacts to Gallium Nitride for high temperature applications

Description

Gallium Nitride (GaN), being a wide-bandgap semiconductor, shows its advantage over the conventional semiconductors like Silicon and Gallium Arsenide for high temperature applications, especially in the temperature range from 300°C

Gallium Nitride (GaN), being a wide-bandgap semiconductor, shows its advantage over the conventional semiconductors like Silicon and Gallium Arsenide for high temperature applications, especially in the temperature range from 300°C to 600°C. Development of stable ohmic contacts to GaN with low contact resistivity has been identified as a prerequisite to the success of GaN high temperature electronics. The focus of this work was primarily derived from the requirement of an appropriate metal contacts to work with GaN-based hybrid solar cell operating at high temperature.

Alloyed Ti/Al/Ni/Au contact and non-alloyed Al/Au contact were developed to form low-resistivity contacts to n-GaN and their stability at high temperature were studied. The alloyed Ti/Al/Ni/Au contact offered a specific contact resistivity (ρc) of 6×10-6 Ω·cm2 at room temperature measured the same as the temperature increased to 400°C. No significant change in ρc was observed after the contacts being subjected to 400°C, 450°C, 500°C, 550°C, and 600°C, respectively, for at least 4 hours in air. Since several device technology prefer non-alloyed contacts Al/Au metal stack was applied to form the contacts to n-type GaN. An initial ρc of 3×10-4 Ω·cm2, measured after deposition, was observed to continuously reduce under thermal stress at 400°C, 450°C, 500°C, 550°C, and 600°C, respectively, finally stabilizing at 5×10-6 Ω·cm2. Both the alloyed and non-alloyed metal contacts showed exceptional capability of stable operation at temperature as high as 600°C in air with low resistivity ~10-6 Ω·cm2, with ρc lowering for the non-alloyed contacts with high temperatures.

The p-GaN contacts showed remarkably superior ohmic behavior at elevated temperatures. Both ρc and sheet resistance (Rsh) of p-GaN decreased by a factor of 10 as the ambient temperature increased from room temperature to 390°C. The annealed Ni/Au contact showed ρc of 2×10-3 Ω·cm2 at room temperature, reduced to 1.6×10-4 Ω·cm2 at 390°C. No degradation was observed after the contacts being subjected to 450°C in air for 48 hours. Indium Tin Oxide (ITO) contacts, which has been widely used as current spreading layer in GaN-base optoelectronic devices, measured an initial ρc [the resistivity of the ITO/p-GaN interface, since the metal/ITO ρc is negligible] of 1×10-2 Ω·cm2 at room temperature. No degradation was observed after the contact being subjected to 450°C in air for 8 hours.

Accelerated life testing (ALT) was performed to further evaluate the contacts stability at high temperatures quantitatively. The ALT results showed that the annealed Ni/Au to p-GaN contacts is more stable in nitrogen ambient, with a lifetime of 2,628 hours at 450°C which is approximately 12 times longer than that at 450°C in air.

Contributors

Agent

Created

Date Created
  • 2016

154170-Thumbnail Image.png

Andreev reflection spectroscopy: theory and experiment

Description

A theoretical study of a three-dimensional (3D) N/S interface with arbitrary spin

polarization and interface geometry is presented. The 3D model gives the same intrinsic

spin polarization and superconducting gap dependence as

A theoretical study of a three-dimensional (3D) N/S interface with arbitrary spin

polarization and interface geometry is presented. The 3D model gives the same intrinsic

spin polarization and superconducting gap dependence as the 1D model. This

demonstrates that the 1D model can be use to t 3D data.

Using this model, a Heusler alloy is investigated. Andreev reflection measurements

show that the spin polarization is 80% in samples sputtered on unheated MgO(100)

substrates and annealed at high temperatures. However, the spin polarization is

considerably smaller in samples deposited on heated substrates.

Ferromagnetic FexSi􀀀x alloys have been proposed as potential spin injectors into

silicon with a substantial spin polarization. Andreev Reflection Spectroscopy (ARS) is

utilized to determine the spin polarization of both amorphous and crystalline Fe65Si35

alloys. The amorphous phase has a significantly higher spin polarization than that of

the crystalline phase.

In this thesis, (1111) Fe SmO0:82F0:18FeAs and Pb superconductors are used to

measure the spin polarization of a highly spin-polarized material, La0:67Sr0:33MnO3.

Both materials yield the same intrinsic spin polarization, therefore, Fe-superconductors

can be used in ARS. Based on the behavior of the differential conductance for highly

spin polarized LSMO and small polarization of Au, it can be concluded that the Fe-Sc

is not a triplet superconductor.

Zero bias anomaly (ZBA), in point contact Andreev reflection (PCAR), has been

utilized as a characteristic feature to reveal many novel physics. Complexities at a

normal metal/superconducting interface often cause nonessential ZBA-like features,

which may be mistaken as ZBA. In this work, it is shown that an extrinsic ZBA,

which is due to the contact resistance, cannot be suppressed by a highly spin-polarized

current while a nonessential ZBA cannot be affected the contact resistance.

Finally, Cu/Cu multilayer GMR structures were fabricated and the GMR% measured

at 300 K and 4.5 K gave responses of 63% and 115% respectively. Not only

do the GMR structures have a large enhancement of resistance, but by applying an

external magnetic eld it is shown that, unlike most materials, the spin polarization

can be tuned to values of 0.386 to 0.415 from H = 0 kOe to H = 15 kOe.

Contributors

Agent

Created

Date Created
  • 2015