Matching Items (5)
151267-Thumbnail Image.png
Description
The goal of the works presented in this volume is to develop a magnetic resonance imaging (MRI) probe for non-invasive detection of extracellular matrix (ECM) underlying fenestrated endothelia. The ECM is the scaffold that supports tissue structure in all organs. In fenestrated structures the such as the kidney glomerulus and

The goal of the works presented in this volume is to develop a magnetic resonance imaging (MRI) probe for non-invasive detection of extracellular matrix (ECM) underlying fenestrated endothelia. The ECM is the scaffold that supports tissue structure in all organs. In fenestrated structures the such as the kidney glomerulus and the hepatic sinusoid the ECM serves a unique role in blood filtration and is directly exposed to blood plasma. An assessment of the ECM in fenestrated organs such as the kidney and liver reports on the organ's ability to filter blood - a process critical to maintaining homeostasis. Unfortunately, clinical assessment of the ECM in most organs requires biopsy, which is focal and invasive. This work will focus on visualizing the ECM underlying fenestrated endothelia with natural nanoparticles and MRI. The superparamagnetic ferritin protein has been proposed as a useful naturally-derived, MRI-detectable nanoparticle due to its biocompatibility, ease of functionalization, and modifiable metallic core. We will show that cationized ferritin (CF) specifically binds to the anionic proteoglycans of the ECM underlying fenestrated endothelia and that its accumulation is MRI-detectable. We will then demonstrate the use of CF and MRI in identifying and measuring all glomeruli in the kidney. We will also explore the toxicity of intravenously injected CF and consider other avenues for its application, including detection of microstructural changes in the liver due to chronic liver disease. This work will show that CF is useful in detected fenestrated microstructures in small animals and humans alike, indicating that CF may find broad application in detecting and monitoring disease in both preclinical and clinical settings.
ContributorsBeeman, Scott (Author) / Bennett, Kevin M (Thesis advisor) / Kodibagkar, Vikram D (Committee member) / Fayad, Zahi A (Committee member) / Pizziconi, Vincent B (Committee member) / Pipe, James G (Committee member) / Arizona State University (Publisher)
Created2012
156354-Thumbnail Image.png
Description
Traumatic brain injury (TBI) is a leading cause of disability worldwide with 1.7 million TBIs reported annually in the United States. Broadly, TBI can be classified into focal injury, associated with cerebral contusion, and diffuse injury, a widespread injury pathology. TBI results in a host of pathological alterations and may

Traumatic brain injury (TBI) is a leading cause of disability worldwide with 1.7 million TBIs reported annually in the United States. Broadly, TBI can be classified into focal injury, associated with cerebral contusion, and diffuse injury, a widespread injury pathology. TBI results in a host of pathological alterations and may lead to a transient blood-brain-barrier (BBB) breakdown. Although the BBB dysfunction after TBI may provide a window for therapeutic delivery, the current drug delivery approaches remains largely inefficient due to rapid clearance, inactivation and degradation. One potential strategy to address the current therapeutic limitations is to employ nanoparticle (NP)-based technology to archive greater efficacy and reduced clearance compared to standard drug administration. However, NP application for TBI is challenging not only due to the transient temporal resolution of the BBB breakdown, but also due to the heterogeneous (focal/diffuse) aspect of the disease itself. Furthermore, recent literature suggests sex of the animal influences neuroinflammation/outcome after TBI; yet, the influence of sex on BBB integrity following TBI and subsequent NP delivery has not been previously investigated. The overarching hypothesis for this thesis is that TBI-induced compromised BBB and leaky vasculature will enable delivery of systemically injected NPs to the injury penumbra. This study specifically explored the feasibility and the temporal accumulation of NPs in preclinical mouse models of focal and diffuse TBI. Key findings from these studies include the following. (1) After focal TBI, NPs ranging from 20-500nm exhibited peak accumulation within the injury penumbra acutely (1h) post-injury. (2) A smaller delayed peak of NP accumulation (40nm) was observed sub-acutely (3d) after focal brain injury. (3) Mild diffuse TBI simulated with a mild closed head injury model did not display any measurable NP accumulation after 1h post-injury. (4) In contrast, a moderate diffuse model (fluid percussion injury) demonstrated peak accumulation at 3h post-injury with up to 500 nm size NPs accumulating in cortical tissue. (5) Robust NP accumulation (40nm) was found in female mice compared to the males at 24h and 3d following focal brain injury. Taken together, these results demonstrate the potential for NP delivery at acute and sub-acute time points after TBI by exploiting the compromised BBB. Results also reveal a potential sex dependent component of BBB disruption leading to altered NP accumulation. The applications of this research are far-reaching ranging from theranostic delivery to personalized NP delivery for effective therapeutic outcome.
ContributorsBharadwaj, Vimala Nagabhushana (Author) / Stabenfeldt, Sarah E (Thesis advisor) / Kodibagkar, Vikram D (Thesis advisor) / Kleim, Jeffrey (Committee member) / Tian, Yanqing (Committee member) / Lifshitz, Jonathan (Committee member) / Anderson, Trent R (Committee member) / Arizona State University (Publisher)
Created2018
154928-Thumbnail Image.png
Description
Magnetic resonance spectroscopic imaging (MRSI) is a valuable technique for assessing the in vivo spatial profiles of metabolites like N-acetylaspartate (NAA), creatine, choline, and lactate. Changes in metabolite concentrations can help identify tissue heterogeneity, providing prognostic and diagnostic information to the clinician. The increased uptake of glucose by solid tumors

Magnetic resonance spectroscopic imaging (MRSI) is a valuable technique for assessing the in vivo spatial profiles of metabolites like N-acetylaspartate (NAA), creatine, choline, and lactate. Changes in metabolite concentrations can help identify tissue heterogeneity, providing prognostic and diagnostic information to the clinician. The increased uptake of glucose by solid tumors as compared to normal tissues and its conversion to lactate can be exploited for tumor diagnostics, anti-cancer therapy, and in the detection of metastasis. Lactate levels in cancer cells are suggestive of altered metabolism, tumor recurrence, and poor outcome. A dedicated technique like MRSI could contribute to an improved assessment of metabolic abnormalities in the clinical setting, and introduce the possibility of employing non-invasive lactate imaging as a powerful prognostic marker.

However, the long acquisition time in MRSI is a deterrent to its inclusion in clinical protocols due to associated costs, patient discomfort (especially in pediatric patients under anesthesia), and higher susceptibility to motion artifacts. Acceleration strategies like compressed sensing (CS) permit faithful reconstructions even when the k-space is undersampled well below the Nyquist limit. CS is apt for MRSI as spectroscopic data are inherently sparse in multiple dimensions of space and frequency in an appropriate transform domain, for e.g. the wavelet domain. The objective of this research was three-fold: firstly on the preclinical front, to prospectively speed-up spectrally-edited MRSI using CS for rapid mapping of lactate and capture associated changes in response to therapy. Secondly, to retrospectively evaluate CS-MRSI in pediatric patients scanned for various brain-related concerns. Thirdly, to implement prospective CS-MRSI acquisitions on a clinical magnetic resonance imaging (MRI) scanner for fast spectroscopic imaging studies. Both phantom and in vivo results demonstrated a reduction in the scan time by up to 80%, with the accelerated CS-MRSI reconstructions maintaining high spectral fidelity and statistically insignificant errors as compared to the fully sampled reference dataset. Optimization of CS parameters involved identifying an optimal sampling mask for CS-MRSI at each acceleration factor. It is envisioned that time-efficient MRSI realized with optimized CS acceleration would facilitate the clinical acceptance of routine MRSI exams for a quantitative mapping of important biomarkers.
ContributorsVidya Shankar, Rohini (Author) / Kodibagkar, Vikram D (Thesis advisor) / Pipe, James (Committee member) / Chang, John (Committee member) / Sadleir, Rosalind (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2016
155581-Thumbnail Image.png
Description
A tumor is a heterogeneous combination of proliferating tumor cells, infiltrating immune cells and stromal components along with a variety of associated host tissue cells, collectively termed the tumor microenvironment (TME). The constituents of the TME and their interaction with the host organ shape and define the properties of tumors

A tumor is a heterogeneous combination of proliferating tumor cells, infiltrating immune cells and stromal components along with a variety of associated host tissue cells, collectively termed the tumor microenvironment (TME). The constituents of the TME and their interaction with the host organ shape and define the properties of tumors and contribute towards the acquisition of hallmark traits such as hypoxia. Hypoxia imparts resistance to cancer from chemotherapy and radiotherapy due to the decreased production of reactive oxygen species and also promotes angiogenesis, malignant progression and metastasis. It also provides a powerful physiological stimulus that can be exploited as a tumor-specific condition, allowing for the rational design of anticancer hypoxia-activated pro-drugs (HAP). Accurate evaluation of tumor oxygenation in response to therapeutics interventions at various stages of growth should provide a better understanding of tumor response to therapy, potentially allowing therapy to be tailored to individual characteristics. The primary goal of this research was to investigate the utility of prospective identification of hypoxic tumors, by two different Magnetic Resonance Imaging (MRI) based oximetry approaches, in successful treatment with hypoxia activated therapy. In the present study, I report the utility of these two techniques 1) PISTOL (Proton Imaging of Siloxanes to map Tissue Oxygenation Levels) and 2) use of a hypoxia binding T1 contrast agent GdDO3NI in reporting the modulations of hypoxia pre and post hypoxia activated therapies in pre-clinical models of cancer. I have performed these studies in non-small cell lung cancer (NSCLC) and epidermoid carcinoma (NCI-H1975 and A431 cell lines, respectively) as well as in patient derived xenograft models of NSCLC. Both the oximetry techniques have the potential to differentiate between normoxic and hypoxic regions of the tumor and reveal both baseline heterogeneity and differential response to therapeutic intervention. The response of the tumor models to therapeutic interventions indicates that, in conjunction with pO2, other factors such as tumor perfusion (essential for delivering HAPs) and relative expression of nitroreductases (essential for activating HAPs) may play an important role. The long term goal of the proposed research is the clinical translation of both the MRI techniques and aiding the design and development of personalized therapy (e.g. patient stratification for novel hypoxia activated pro-drugs) particularly for cancer.
ContributorsAgarwal, Shubhangi (Author) / Kodibagkar, Vikram D (Thesis advisor) / Inge, Landon J (Committee member) / Nikkhah, Mehdi (Committee member) / Pagel, Mark D. (Committee member) / Sadleir, Rosalind J (Committee member) / Arizona State University (Publisher)
Created2017
161874-Thumbnail Image.png
Description
Magnetic resonance imaging (MRI) is a noninvasive imaging modality, which is used for many different applications. The versatility of MRI is in acquiring high resolution anatomical and functional images with no use of ionizing radiation. The contrast in MR images can be engineered by two different mechanisms with imaging parameters

Magnetic resonance imaging (MRI) is a noninvasive imaging modality, which is used for many different applications. The versatility of MRI is in acquiring high resolution anatomical and functional images with no use of ionizing radiation. The contrast in MR images can be engineered by two different mechanisms with imaging parameters (TR, TE, α) and/or contrast agents. The contrast in the former is influenced by the intrinsic properties of the tissue (T1, T2, ρ), while the contrast agents change the relaxation rate of the protons to enhance contrast. Contrast agents have attracted a lot of attention because they can be modified with targeting groups to shed light on some physiological and biological questions, such as the presence of hypoxia in a tissue. Hypoxia, defined as lack of oxygen, has many known ramifications on the outcome of therapy in any condition. Hence its study is very important. The standard gold method to detect hypoxia, immunohistochemical (IHC) staining of pimonidazole, is invasive; however, there are many research groups focused on developing new and mainly noninvasive methods to investigate hypoxia in different tissues.Previously, a novel nitroimidazole-based T1 contrast agent, gadolinium tetraazacyclododecanetetraacetic acid monoamide conjugate of 2-nitroimidazole (GdDO3NI ), has been synthesized and characterized on subcutaneous prostate and lung tumor models. Here, its efficacy and performance on traumatic brain injuries and brain tumors are studied. The pharmacokinetic properties of the contrast agent the perfusion properties of brain tumors are investigated. These results can be used in personalized therapies for more effective results for patients. Gadolinium (Gd), which is a strongly paramagnetic heavy metal, is routinely and widely used as an MR contrast agent by chelation with a biocompatible ligand which is typically cleared through the kidneys. While widely used, there are serious concerns for patients with impaired kidney function, as well as recent studies showed Gd accumulation in the bone and brain. Iron as a physiological ion is also capable of generating contrast in MR images. Here synthesis and characterization of an iron-based hypoxia targeting contrast agent is proposed to eliminate Gd-related complications and provide a cheaper and more economical alternative contrast agent to detect hypoxia.
ContributorsMoghadas, Babak (Author) / Kodibagkar, Vikram D (Thesis advisor) / Beeman, Scott (Committee member) / Muthuswamy, Jitendran (Committee member) / Nikkhah, Mehdi (Committee member) / Turner, Gregory (Committee member) / Arizona State University (Publisher)
Created2021