Matching Items (40)
155962-Thumbnail Image.png
Description
Programming is quickly becoming as ubiquitous and essential a skill as general mathematics. However, many elementary and high school students are still not aware of what the computer science field entails. To make matters worse, students who are introduced to computer science are frequently being fed only part of what

Programming is quickly becoming as ubiquitous and essential a skill as general mathematics. However, many elementary and high school students are still not aware of what the computer science field entails. To make matters worse, students who are introduced to computer science are frequently being fed only part of what it is about rather than its entire construction. Consequently, they feel out of their depth when they approach college. Research has discovered that by teaching computer science and programming through a problem-driven approach and focusing on a combination of syntax and computational thinking, students can be prepared when entering higher levels of computer science education.

This thesis describes the design, development, and early user testing of a theory-based virtual world for computer science instruction called System Dot. System Dot was designed to visually manifest programming instructions into interactable objects, giving players a way to see coding as tangible entities rather than text on a white screen. In order for System Dot to convey the true nature of computer science, a custom predictive recursive descent parser was embedded in the program to validate any user-generated solutions to pre-defined logical platforming puzzles.

Steps were taken to adapt the virtual world to player behavior by creating a system to detect their learning style playing the game. Through a dynamic Bayesian network, System Dot aims to classify a player’s learning style based on the Felder-Sylverman Learning Style Model (FSLSM). Testers played through the first half of System Dot, which was enough to test out the Bayesian network and initial learning style classification. This classification was then compared to the assessment by Felder’s Index of Learning Styles Questionnaire (ILSQ). Lastly, this thesis will also discuss ways to use the results from the user testing to implement a personalized feedback system for the virtual world in the future and what has been learned through the learning style method.
ContributorsKury, Nizar (Author) / Nelson, Brian C (Thesis advisor) / Hsiao, Ihan (Committee member) / Kobayashi, Yoshihiro (Committee member) / Arizona State University (Publisher)
Created2017
131525-Thumbnail Image.png
Description
The original version of Helix, the one I pitched when first deciding to make a video game
for my thesis, is an action-platformer, with the intent of metroidvania-style progression
and an interconnected world map.

The current version of Helix is a turn based role-playing game, with the intent of roguelike
gameplay and a dark

The original version of Helix, the one I pitched when first deciding to make a video game
for my thesis, is an action-platformer, with the intent of metroidvania-style progression
and an interconnected world map.

The current version of Helix is a turn based role-playing game, with the intent of roguelike
gameplay and a dark fantasy theme. We will first be exploring the challenges that came
with programming my own game - not quite from scratch, but also without a prebuilt
engine - then transition into game design and how Helix has evolved from its original form
to what we see today.
ContributorsDiscipulo, Isaiah K (Author) / Meuth, Ryan (Thesis director) / Kobayashi, Yoshihiro (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
136495-Thumbnail Image.png
Description
The objective of this project concentrates on the game Defense of the Ancients 2 (Dota 2). In this game, players are constantly striving to improve their skills, which are fueled by the competitive nature of the game. The design influences the community to engage in this interaction as they play

The objective of this project concentrates on the game Defense of the Ancients 2 (Dota 2). In this game, players are constantly striving to improve their skills, which are fueled by the competitive nature of the game. The design influences the community to engage in this interaction as they play the game cooperatively. This thesis illustrates the importance of player interaction in influencing design as well as how imperative design is in affecting player interaction. These two concepts are not separate, but are deeply entwined. Every action performed within a game has to interact with some element of design. Both determine how games become defined as competitive, casual, or creative. Game designers can benefit from this study as it reinforces the basics of developing a game for players to interact with. However, it is impossible to predict exactly how players will react to a designed element. Designers should remember to tailor the game towards their audience, but also react and change the game depending on how players are using the elements of design. In addition, players should continue to push the boundaries of games to help designers adapt their product to their audience. If there is not constant communication between players and designers, games will not be tailored appropriately. Pushing the limits of a game benefits the players as well as the designers to make a more complete game. Designers do not solely create a game for the players. Rather, players design the game for themselves. Keywords: game design, player interaction, affinity space, emergent behavior, Dota 2
ContributorsLarsen, Austin James (Author) / Gee, James Paul (Thesis director) / Holmes, Jeffrey (Committee member) / Kobayashi, Yoshihiro (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / School of Arts, Media and Engineering (Contributor)
Created2015-05
133743-Thumbnail Image.png
Description
This project is a Game Engine for 2D Fighting Games which uses Simple DirectMedia Layer and C++. The Game Engine's goal is to model the conventions the genre has for dynamically handling combat between two characters. The characters can be in a variety of different states that animate certain features

This project is a Game Engine for 2D Fighting Games which uses Simple DirectMedia Layer and C++. The Game Engine's goal is to model the conventions the genre has for dynamically handling combat between two characters. The characters can be in a variety of different states that animate certain features while also responding to the environment based on key statuses. There is a playable test game that is the subject of a user study. The Game Engine's capabilities are shown by the test game and the limitations / missing features are discussed.
ContributorsStanton, Nicholas Scott (Author) / Kobayashi, Yoshihiro (Thesis director) / Hansford, Dianne (Committee member) / Computer Science and Engineering Program (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133565-Thumbnail Image.png
Description
This paper details the process for designing both a simulation of the board game Jaipur, and an artificial intelligence (AI) agent that can play the game against a human player. When designing an AI for a card game, there are two major problems that can arise. The first is the

This paper details the process for designing both a simulation of the board game Jaipur, and an artificial intelligence (AI) agent that can play the game against a human player. When designing an AI for a card game, there are two major problems that can arise. The first is the difficulty of using a search space to analyze every possible set of future moves. Due to the randomized nature of the deck of cards, the search space rapidly leads to an exponentially growing set of potential game states to analyze when one tries to look more than one turn ahead. The second aspect that poses difficulty is the element of uncertainty that exists from opponent feedback. Certain moves are weak to specific opponent reactions, and these are difficult to predict due to hidden information. To circumvent these problems, the AI uses a greedy approach to decision making, attempting to maximize the value of its plays immediately, and not play for future turns. The agent utilizes conditional statements to evaluate the game state and choose a game action that it deems optimal, a heuristic to place an expected value (EV) of the goods it can choose from, and selects the best one based on this evaluation. Initial implementation of the simulation was done using C++ through a terminal application, and then was translated to a graphical interface using Unity and C#.
ContributorsOrr, James Christopher (Author) / Kobayashi, Yoshihiro (Thesis director) / Selgrad, Justin (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137137-Thumbnail Image.png
Description
Speech recognition in games is rarely seen. This work presents a project, a 2D computer game named "The Emblems" which utilizes speech recognition as input. The game itself is a two person strategy game whose goal is to defeat the opposing player's army. This report focuses on the speech-recognition aspect

Speech recognition in games is rarely seen. This work presents a project, a 2D computer game named "The Emblems" which utilizes speech recognition as input. The game itself is a two person strategy game whose goal is to defeat the opposing player's army. This report focuses on the speech-recognition aspect of the project. The players interact on a turn-by-turn basis by speaking commands into the computer's microphone. When the computer recognizes a command, it will respond accordingly by having the player's unit perform an action on screen.
ContributorsNguyen, Jordan Ngoc (Author) / Kobayashi, Yoshihiro (Thesis director) / Maciejewski, Ross (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-05
137149-Thumbnail Image.png
Description
The project, "The Emblems: OpenGL" is a 2D strategy game that incorporates Speech Recognition for control and OpenGL for computer graphics. Players control their own army by voice commands and try to eliminate the opponent's army. This report focuses on the 2D art and visual aspects of the project. There

The project, "The Emblems: OpenGL" is a 2D strategy game that incorporates Speech Recognition for control and OpenGL for computer graphics. Players control their own army by voice commands and try to eliminate the opponent's army. This report focuses on the 2D art and visual aspects of the project. There are different sprites for the player's army units and icons within the game. The game also has a grid for easy unit placement.
ContributorsHsia, Allen (Author) / Kobayashi, Yoshihiro (Thesis director) / Maciejewski, Ross (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-05
134486-Thumbnail Image.png
Description
The objective of this creative project was to gain experience in digital modeling, animation, coding, shader development and implementation, model integration techniques, and application of gaming principles and design through developing a professional educational game. The team collaborated with Glendale Community College (GCC) to produce an interactive product intended to

The objective of this creative project was to gain experience in digital modeling, animation, coding, shader development and implementation, model integration techniques, and application of gaming principles and design through developing a professional educational game. The team collaborated with Glendale Community College (GCC) to produce an interactive product intended to supplement educational instructions regarding nutrition. The educational game developed, "Nutribots" features the player acting as a nutrition based nanobot sent to the small intestine to help the body. Throughout the game the player will be asked nutrition based questions to test their knowledge of proteins, carbohydrates, and lipids. If the player is unable to answer the question, they must use game mechanics to progress and receive the information as a reward. The level is completed as soon as the question is answered correctly. If the player answers the questions incorrectly twenty times within the entirety of the game, the team loses faith in the player, and the player must reset from title screen. This is to limit guessing and to make sure the player retains the information through repetition once it is demonstrated that they do not know the answers. The team was split into two different groups for the development of this game. The first part of the team developed models, animations, and textures using Autodesk Maya 2016 and Marvelous Designer. The second part of the team developed code and shaders, and implemented products from the first team using Unity and Visual Studio. Once a prototype of the game was developed, it was show-cased amongst peers to gain feedback. Upon receiving feedback, the team implemented the desired changes accordingly. Development for this project began on November 2015 and ended on April 2017. Special thanks to Laura Avila Department Chair and Jennifer Nolz from Glendale Community College Technology and Consumer Sciences, Food and Nutrition Department.
ContributorsNolz, Daisy (Co-author) / Martin, Austin (Co-author) / Quinio, Santiago (Co-author) / Armstrong, Jessica (Co-author) / Kobayashi, Yoshihiro (Thesis director) / Valderrama, Jamie (Committee member) / School of Arts, Media and Engineering (Contributor) / School of Film, Dance and Theatre (Contributor) / Department of English (Contributor) / Computer Science and Engineering Program (Contributor) / Computing and Informatics Program (Contributor) / Herberger Institute for Design and the Arts (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134533-Thumbnail Image.png
Description
Learning to program is no easy task, and many students experience their first programming during their university education. Unfortunately, programming classes have a large number of students enrolled, so it is nearly impossible for professors to associate with the students at an individual level and provide the personal attention each

Learning to program is no easy task, and many students experience their first programming during their university education. Unfortunately, programming classes have a large number of students enrolled, so it is nearly impossible for professors to associate with the students at an individual level and provide the personal attention each student needs. This project aims to provide professors with a tool to quickly respond to the current understanding of the students. This web-based application gives professors the control to quickly ask Java programming questions, and the ability to see the aggregate data on how many of the students have successfully completed the assigned questions. With this system, the students are provided with extra programming practice in a controlled environment, and if there is an error in their program, the system will provide feedback describing what the error means and what steps the student can take to fix it.
ContributorsVillela, Daniel Linus (Author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Hsiao, Sharon (Committee member) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133515-Thumbnail Image.png
Description
Natural Language Processing and Virtual Reality are hot topics in the present. How can we synthesize these together in order to make a cohesive experience? The game focuses on users using vocal commands, building structures, and memorizing spatial objects. In order to get proper vocal commands, the IBM Watson API

Natural Language Processing and Virtual Reality are hot topics in the present. How can we synthesize these together in order to make a cohesive experience? The game focuses on users using vocal commands, building structures, and memorizing spatial objects. In order to get proper vocal commands, the IBM Watson API for Natural Language Processing was incorporated into our game system. User experience elements like gestures, UI color change, and images were used to help guide users in memorizing and building structures. The process to create these elements were streamlined through the VRTK library in Unity. The game has two segments. The first segment is a tutorial level where the user learns to perform motions and in-game actions. The second segment is a game where the user must correctly create a structure by utilizing vocal commands and spatial recognition. A standardized usability test, System Usability Scale, was used to evaluate the effectiveness of the game. A survey was also created in order to evaluate a more descriptive user opinion. Overall, users gave a positive score on the System Usability Scale and slightly positive reviews in the custom survey.
ContributorsOrtega, Excel (Co-author) / Ryan, Alexander (Co-author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Computing and Informatics Program (Contributor) / School of Art (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05