Matching Items (1,040)
Filtering by

Clear all filters

132440-Thumbnail Image.png
Description
In this experiment an Electrodynamic Ion Ring Trap was constructed and tested. Due to the nature of Electrostatic fields, the setup required an oscillating voltage source to stably trap the particles. It was built in a safe manner, The power supply was kept in a project box to avoid incidental

In this experiment an Electrodynamic Ion Ring Trap was constructed and tested. Due to the nature of Electrostatic fields, the setup required an oscillating voltage source to stably trap the particles. It was built in a safe manner, The power supply was kept in a project box to avoid incidental contact, and was connected to a small copper wire in the shape of a ring. The maximum voltage that could be experienced via incidental contact was well within safe ranges a 0.3mA. Within minutes of its completion the trap was able to trap small Lycopodium powder spores mass of approximately 1.7*10^{-11}kg in clusters of 15-30 for long timescales. The oscillations of these spores were observed to be roughly 1.01mm at their maximum, and in an attempt to understand the dynamics of the Ion Trap, a concept called the pseudo-potential of the trap was used. This method proved fairly inaccurate, involving much estimation and using a static field estimation of 9.39*10^8 N\C and a charge estimate on the particles of ~1e, a maximum oscillation distance of 1.37m was calculated. Though the derived static field strength was not far off from the field strength required to achieve the correct oscillation distance (Percent error of 9.92%, the small discrepancy caused major calculation errors. The trap's intended purpose however was to eventually trap protein molecules for mapping via XFEL laser, and after its successful construction that goal is fairly achievable. The trap was also housed in a vacuum chamber so that it could be more effectively implemented with the XFEL.
ContributorsNicely, Ryan Joseph (Author) / Kirian, Richard (Thesis director) / Weiterstall, Uwe (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
X-ray Free Electron Lasers (XFELs) are used for diffractive x-ray imaging of the structure of many biological particles, such as viruses and proteins. The ultimate goal for XFEL-based microscopy is atomic resolution images of non-crystalline particles. However, data collection efficiency as well as the limited amount of measurement time given

X-ray Free Electron Lasers (XFELs) are used for diffractive x-ray imaging of the structure of many biological particles, such as viruses and proteins. The ultimate goal for XFEL-based microscopy is atomic resolution images of non-crystalline particles. However, data collection efficiency as well as the limited amount of measurement time given annually to researchers, such high-resolution images are presently impossible to attain. Here, we consider two potential solutions to the single-particle hit rate problem; the first looks at applying static electric fields to existing aerodynamic particle injectors, and the second looks at the viability of using time-varying electric fields associated with ion traps to create high-density regions of particles. For the static solution, we looked at applying a constant electric potential to the nozzle, as well as applying a high voltage to a ring electrode in close proximity to a grounded nozzle. We considered the breakdown field strength of the helium gas used to determine how closely the ring electrode could be placed without creating an arc that could potentially destroy expensive equipment. Then, we considered the possibility of using electrodynamic ion traps to increase particle densities. We first characterized how charged particles behave in oscillating electric fields using a simple electrode geometry. Using the general results from this, we then constructed a rudimentary ion trap to test if our experiment agreed with the theory. Finally, we conducted a literature review to determine what particle densities other scientists have been able to measure using ion traps. We then compared existing ion traps to what we expect from the nozzle injectors to determine which method may be the better solution.
ContributorsBradshaw, Layne Nicholas (Author) / Kirian, Richard (Thesis director) / Weierstall, Uwe (Committee member) / Department of Physics (Contributor, Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
153785-Thumbnail Image.png
Description
Scientists have used X-rays to study biological molecules for nearly a century. Now with the X-ray free electron laser (XFEL), new methods have been developed to advance structural biology. These new methods include serial femtosecond crystallography, single particle imaging, solution scattering, and time resolved techniques.

The XFEL is characterized by high

Scientists have used X-rays to study biological molecules for nearly a century. Now with the X-ray free electron laser (XFEL), new methods have been developed to advance structural biology. These new methods include serial femtosecond crystallography, single particle imaging, solution scattering, and time resolved techniques.

The XFEL is characterized by high intensity pulses, which are only about 50 femtoseconds in duration. The intensity allows for scattering from microscopic particles, while the short pulses offer a way to outrun radiation damage. XFELs are powerful enough to obliterate most samples in a single pulse. While this allows for a “diffract and destroy” methodology, it also requires instrumentation that can position microscopic particles into the X-ray beam (which may also be microscopic), continuously renew the sample after each pulse, and maintain sample viability during data collection.

Typically these experiments have used liquid microjets to continuously renew sample. The high flow rate associated with liquid microjets requires large amounts of sample, most of which runs to waste between pulses. An injector designed to stream a viscous gel-like material called lipidic cubic phase (LCP) was developed to address this problem. LCP, commonly used as a growth medium for membrane protein crystals, lends itself to low flow rate jetting and so reduces the amount of sample wasted significantly.

This work discusses sample delivery and injection for XFEL experiments. It reviews the liquid microjet method extensively, and presents the LCP injector as a novel device for serial crystallography, including detailed protocols for the LCP injector and anti-settler operation.
ContributorsJames, Daniel (Author) / Spence, John (Thesis advisor) / Weierstall, Uwe (Committee member) / Kirian, Richard (Committee member) / Schmidt, Kevin (Committee member) / Arizona State University (Publisher)
Created2015