Matching Items (37)
155915-Thumbnail Image.png
Description
Semiconductor nanowires have the potential to emerge as the building blocks of next generation field-effect transistors, logic gates, solar cells and light emitting diodes. Use of Gallium Nitride (GaN) and other wide bandgap materials combines the advantages of III-nitrides along with the enhanced mobility offered by 2-dimensional confinement present in

Semiconductor nanowires have the potential to emerge as the building blocks of next generation field-effect transistors, logic gates, solar cells and light emitting diodes. Use of Gallium Nitride (GaN) and other wide bandgap materials combines the advantages of III-nitrides along with the enhanced mobility offered by 2-dimensional confinement present in nanowires. The focus of this thesis is on developing a low field mobility model for a GaN nanowire using Ensemble Monte Carlo (EMC) techniques. A 2D Schrödinger-Poisson solver and a one-dimensional Monte Carlo solver is developed for an Aluminum Gallium Nitride/Gallium Nitride Heterostructure nanowire. A GaN/AlN/AlGaN heterostructure device is designed which creates 2-dimensional potential well for electrons. The nanowire is treated as a quasi-1D system in this work. A self-consistent 2D Schrödinger-Poisson solver is designed which determines the subband energies and the corresponding wavefunctions of the confined system. Three scattering mechanisms: acoustic phonon scattering, polar optical phonon scattering and piezoelectric scattering are considered to account for the electron phonon interactions in the system. Overlap integrals and 1D scattering rate expressions are derived for all the mechanisms listed. A generic one-dimensional Monte Carlo solver is also developed. Steady state results from the 1D Monte Carlo solver are extracted to determine the low field mobility of the GaN nanowires.
ContributorsKumar, Viswanathan Naveen (Author) / Vasileska, Dragica (Thesis advisor) / Goodnick, Stephen (Committee member) / Zhao, Yuji (Committee member) / Arizona State University (Publisher)
Created2017
157176-Thumbnail Image.png
Description
Gallium Nitride (GaN) based Current Aperture Vertical Electron Transistors (CAVETs) present many appealing qualities for applications in high power, high frequency devices. The wide bandgap, high carrier velocity of GaN make it ideal for withstanding high electric fields and supporting large currents. The vertical topology of the CAVET allows for

Gallium Nitride (GaN) based Current Aperture Vertical Electron Transistors (CAVETs) present many appealing qualities for applications in high power, high frequency devices. The wide bandgap, high carrier velocity of GaN make it ideal for withstanding high electric fields and supporting large currents. The vertical topology of the CAVET allows for more efficient die area utilization, breakdown scaling with the height of the device, and burying high electric fields in the bulk where they will not charge interface states that can lead to current collapse at higher frequency.

Though GaN CAVETs are promising new devices, they are expensive to develop due to new or exotic materials and processing steps. As a result, the accurate simulation of GaN CAVETs has become critical to the development of new devices. Using Silvaco Atlas 5.24.1.R, best practices were developed for GaN CAVET simulation by recreating the structure and results of the pGaN insulated gate CAVET presented in chapter 3 of [8].

From the results it was concluded that the best simulation setup for transfer characteristics, output characteristics, and breakdown included the following. For methods, the use of Gummel, Block, Newton, and Trap. For models, SRH, Fermi, Auger, and impact selb. For mobility, the use of GANSAT and manually specified saturation velocity and mobility (based on doping concentration). Additionally, parametric sweeps showed that, of those tested, critical CAVET parameters included channel mobility (and thus doping), channel thickness, Current Blocking Layer (CBL) doping, gate overlap, and aperture width in rectangular devices or diameter in cylindrical devices.
ContributorsWarren, Andrew (Author) / Vasileska, Dragica (Thesis advisor) / Goodnick, Stephen (Committee member) / Zhao, Yuji (Committee member) / Arizona State University (Publisher)
Created2019
157046-Thumbnail Image.png
Description
Wide bandgap (WBG) semiconductors GaN (3.4 eV), Ga2O3 (4.8 eV) and AlN (6.2 eV), have gained considerable interests for energy-efficient optoelectronic and electronic applications in solid-state lighting, photovoltaics, power conversion, and so on. They can offer unique device performance compared with traditional semiconductors such as Si. Efficient GaN based light-emitting

Wide bandgap (WBG) semiconductors GaN (3.4 eV), Ga2O3 (4.8 eV) and AlN (6.2 eV), have gained considerable interests for energy-efficient optoelectronic and electronic applications in solid-state lighting, photovoltaics, power conversion, and so on. They can offer unique device performance compared with traditional semiconductors such as Si. Efficient GaN based light-emitting diodes (LEDs) have increasingly displaced incandescent and fluorescent bulbs as the new major light sources for lighting and display. In addition, due to their large bandgap and high critical electrical field, WBG semiconductors are also ideal candidates for efficient power conversion.

In this dissertation, two types of devices are demonstrated: optoelectronic and electronic devices. Commercial polar c-plane LEDs suffer from reduced efficiency with increasing current densities, knowns as “efficiency droop”, while nonpolar/semipolar LEDs exhibit a very low efficiency droop. A modified ABC model with weak phase space filling effects is proposed to explain the low droop performance, providing insights for designing droop-free LEDs. The other emerging optoelectronics is nonpolar/semipolar III-nitride intersubband transition (ISBT) based photodetectors in terahertz and far infrared regime due to the large optical phonon energy and band offset, and the potential of room-temperature operation. ISBT properties are systematically studied for devices with different structures parameters.

In terms of electronic devices, vertical GaN p-n diodes and Schottky barrier diodes (SBDs) with high breakdown voltages are homoepitaxially grown on GaN bulk substrates with much reduced defect densities and improved device performance. The advantages of the vertical structure over the lateral structure are multifold: smaller chip area, larger current, less sensitivity to surface states, better scalability, and smaller current dispersion. Three methods are proposed to boost the device performances: thick buffer layer design, hydrogen-plasma based edge termination technique, and multiple drift layer design. In addition, newly emerged Ga2O3 and AlN power electronics may outperform GaN devices. Because of the highly anisotropic crystal structure of Ga2O3, anisotropic electrical properties have been observed in Ga2O3 electronics. The first 1-kV-class AlN SBDs are demonstrated on cost-effective sapphire substrates. Several future topics are also proposed including selective-area doping in GaN power devices, vertical AlN power devices, and (Al,Ga,In)2O3 materials and devices.
ContributorsFu, Houqiang (Author) / Zhao, Yuji (Thesis advisor) / Vasileska, Dragica (Committee member) / Goodnick, Stephen (Committee member) / Yu, Hongbin (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2019
134611-Thumbnail Image.png
Description
This paper reviews several current designs of Cube Satellite (CubeSat) Electrical Power Systems (EPS) based on Silicon FET technologies and their current deficiencies, such as radiation-incurred defects and switching power losses. A strategy to fix these is proposed by the way of using Gallium Nitride (GaN) High Electron-Mobility Transistors (HEMTs)

This paper reviews several current designs of Cube Satellite (CubeSat) Electrical Power Systems (EPS) based on Silicon FET technologies and their current deficiencies, such as radiation-incurred defects and switching power losses. A strategy to fix these is proposed by the way of using Gallium Nitride (GaN) High Electron-Mobility Transistors (HEMTs) as switching devices within Buck/Boost Converters and other regulators. This work summarizes the EPS designs of several CubeSat missions, classifies them, and outlines their efficiency. An in-depth example of an EPS is also given, explaining the process in which these systems are designed. Areas of deficiency are explained along with reasoning as to why GaN can mitigate these losses, including its wide bandgap properties such as high RDS(on) and High Breakdown Voltage. Special design considerations must be kept in mind when using GaN HEMTs in this application and an example of a CubeSat using GaN HEMTs is mentioned. Finally, challenges ahead for GaN are explored including manufacturing considerations and long-term reliability.
ContributorsWilloughby, Alexander George (Author) / Kitchen, Jennifer (Thesis director) / Zhao, Yuji (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
154494-Thumbnail Image.png
Description
III-nitride InGaN light-emitting diodes (LEDs) enable wide range of applications in solid-state lighting, full-color displays, and high-speed visible-light communication. Conventional InGaN quantum well LEDs grown on polar c-plane substrate suffer from quantum confined Stark effect due to the large internal polarization-related fields, leading to a reduced radiative recombination rate and

III-nitride InGaN light-emitting diodes (LEDs) enable wide range of applications in solid-state lighting, full-color displays, and high-speed visible-light communication. Conventional InGaN quantum well LEDs grown on polar c-plane substrate suffer from quantum confined Stark effect due to the large internal polarization-related fields, leading to a reduced radiative recombination rate and device efficiency, which limits the performance of InGaN LEDs in high-speed communication applications. To circumvent these negative effects, non-trivial-cavity designs such as flip-chip LEDs, metallic grating coated LEDs are proposed. This oral defense will show the works on the high-modulation-speed LEDs from basic ideas to applications. Fundamental principles such as rate equations for LEDs/laser diodes (LDs), plasmonic effects, Purcell effects will be briefly introduced. For applications, the modal properties of flip-chip LEDs are solved by implementing finite difference method in order to study the modulation response. The emission properties of highly polarized InGaN LEDs coated by metallic gratings are also investigated by finite difference time domain method.
ContributorsChen, Hong (Author) / Zhao, Yuji (Thesis advisor) / Yao, Yu (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2016
154972-Thumbnail Image.png
Description
Gallium Nitride (GaN), being a wide-bandgap semiconductor, shows its advantage over the conventional semiconductors like Silicon and Gallium Arsenide for high temperature applications, especially in the temperature range from 300°C to 600°C. Development of stable ohmic contacts to GaN with low contact resistivity has been identified as a prerequisite to

Gallium Nitride (GaN), being a wide-bandgap semiconductor, shows its advantage over the conventional semiconductors like Silicon and Gallium Arsenide for high temperature applications, especially in the temperature range from 300°C to 600°C. Development of stable ohmic contacts to GaN with low contact resistivity has been identified as a prerequisite to the success of GaN high temperature electronics. The focus of this work was primarily derived from the requirement of an appropriate metal contacts to work with GaN-based hybrid solar cell operating at high temperature.

Alloyed Ti/Al/Ni/Au contact and non-alloyed Al/Au contact were developed to form low-resistivity contacts to n-GaN and their stability at high temperature were studied. The alloyed Ti/Al/Ni/Au contact offered a specific contact resistivity (ρc) of 6×10-6 Ω·cm2 at room temperature measured the same as the temperature increased to 400°C. No significant change in ρc was observed after the contacts being subjected to 400°C, 450°C, 500°C, 550°C, and 600°C, respectively, for at least 4 hours in air. Since several device technology prefer non-alloyed contacts Al/Au metal stack was applied to form the contacts to n-type GaN. An initial ρc of 3×10-4 Ω·cm2, measured after deposition, was observed to continuously reduce under thermal stress at 400°C, 450°C, 500°C, 550°C, and 600°C, respectively, finally stabilizing at 5×10-6 Ω·cm2. Both the alloyed and non-alloyed metal contacts showed exceptional capability of stable operation at temperature as high as 600°C in air with low resistivity ~10-6 Ω·cm2, with ρc lowering for the non-alloyed contacts with high temperatures.

The p-GaN contacts showed remarkably superior ohmic behavior at elevated temperatures. Both ρc and sheet resistance (Rsh) of p-GaN decreased by a factor of 10 as the ambient temperature increased from room temperature to 390°C. The annealed Ni/Au contact showed ρc of 2×10-3 Ω·cm2 at room temperature, reduced to 1.6×10-4 Ω·cm2 at 390°C. No degradation was observed after the contacts being subjected to 450°C in air for 48 hours. Indium Tin Oxide (ITO) contacts, which has been widely used as current spreading layer in GaN-base optoelectronic devices, measured an initial ρc [the resistivity of the ITO/p-GaN interface, since the metal/ITO ρc is negligible] of 1×10-2 Ω·cm2 at room temperature. No degradation was observed after the contact being subjected to 450°C in air for 8 hours.

Accelerated life testing (ALT) was performed to further evaluate the contacts stability at high temperatures quantitatively. The ALT results showed that the annealed Ni/Au to p-GaN contacts is more stable in nitrogen ambient, with a lifetime of 2,628 hours at 450°C which is approximately 12 times longer than that at 450°C in air.
ContributorsZhao, Shirong (Author) / Chowdhury, Srabanti (Thesis advisor) / Goodnick, Stephen (Committee member) / Zhao, Yuji (Committee member) / Nemanich, Robert (Committee member) / Arizona State University (Publisher)
Created2016
154954-Thumbnail Image.png
Description
The state of the solar industry has reached a point where significant advancements in efficiency will require new materials and device concepts. The material class broadly known as the III-N's have a rich history as a commercially successful semiconductor. Since discovery in 2003 these materials have shown promise for the

The state of the solar industry has reached a point where significant advancements in efficiency will require new materials and device concepts. The material class broadly known as the III-N's have a rich history as a commercially successful semiconductor. Since discovery in 2003 these materials have shown promise for the field of photovoltaic solar technologies. However, inherent material issues in crystal growth and the subsequent effects on device performance have hindered their development. This thesis explores new growth techniques for III-N materials in tandem with new device concepts that will either work around the previous hindrances or open pathways to device technologies with higher theoretical limits than much of current photovoltaics. These include a novel crystal growth reactor, efforts in production of better quality material at faster rates, and development of advanced photovoltaic devices: an inversion junction solar cell, material work for hot carrier solar cell, ground work for a selective carrier contact, and finally a refractory solar cell for operation at several hundred degrees Celsius.
ContributorsWilliams, Joshua J (Author) / Honsberg, C. (Christiana B.) (Thesis advisor) / Goodnick, Stephen M. (Thesis advisor) / Williamson, Todd L. (Committee member) / Alford, Terry L. (Committee member) / King, Richard R. (Committee member) / Arizona State University (Publisher)
Created2016
155476-Thumbnail Image.png
Description
This dissertation aims to study and understand the effect of nonlinear dynamics and quantum chaos in graphene, optomechanics, photonics and spintronics systems.

First, in graphene quantum dot systems, conductance fluctuations are investigated from the respects of Fano resonances and quantum chaos. The conventional semi-classical theory of quantum chaotic scattering used in

This dissertation aims to study and understand the effect of nonlinear dynamics and quantum chaos in graphene, optomechanics, photonics and spintronics systems.

First, in graphene quantum dot systems, conductance fluctuations are investigated from the respects of Fano resonances and quantum chaos. The conventional semi-classical theory of quantum chaotic scattering used in this field depends on an invariant classical phase-space structure. I show that for systems without an invariant classical phase-space structure, the quantum pointer states can still be used to explain the conductance fluctuations. Another finding is that the chaotic geometry is demonstrated to have similar effects as the disorders in transportations.

Second, in optomechanics systems, I find rich nonlinear dynamics. Using the semi-classical Langevin equations, I demonstrate a quasi-periodic motion is favorable for the quantum entanglement between the optical mode and mechanical mode. Then I use the quantum trajectory theory to provide a new resolution for the breakdown of the classical-quantum correspondences in the chaotic regions.

Third, I investigate the analogs of the electrical band structures and effects in the non-electrical systems. In the photonic systems, I use an array of waveguides to simulate the transport of the massive relativistic particle in a non-Hermitian scenario. A new form of Zitterbewegung is discovered as well as its analytical explanation. In mechanical systems, I use springs and mass points systems to achieve a three band degenerate band structure with a new pair of spatially separated edge states in the Dice lattice. A new semi-metal phase with the intrinsic valley-Hall effect is found.

At last, I investigate the nonlinear dynamics in the spintronics systems, in which the topological insulator couples with a magnetization. Rich nonlinear dynamics are discovered in this systems, especially the multi-stability states.
ContributorsWang, Guanglei (Author) / Lai, Ying-Cheng (Thesis advisor) / Vasileska, Dragica (Committee member) / Ning, Cun-Zheng (Committee member) / Zhao, Yuji (Committee member) / Arizona State University (Publisher)
Created2017
155400-Thumbnail Image.png
Description
III-V multijunction solar cells have demonstrated record efficiencies with the best device currently at 46 % under concentration. Dilute nitride materials such as GaInNAsSb have been identified as a prime choice for the development of high efficiency, monolithic and lattice-matched multijunction solar cells as they can be lattice-matched to both

III-V multijunction solar cells have demonstrated record efficiencies with the best device currently at 46 % under concentration. Dilute nitride materials such as GaInNAsSb have been identified as a prime choice for the development of high efficiency, monolithic and lattice-matched multijunction solar cells as they can be lattice-matched to both GaAs and Ge substrates. These types of cells have demonstrated efficiencies of 44% for terrestrial concentrators, and with their upright configuration, they are a direct drop-in product for today’s space and concentrator solar panels. The work presented in this dissertation has focused on the development of relatively novel dilute nitride antimonide (GaNAsSb) materials and solar cells using plasma-assisted molecular beam epitaxy, along with the modeling and characterization of single- and multijunction solar cells.

Nitrogen-free ternary compounds such as GaInAs and GaAsSb were investigated first in order to understand their structural and optical properties prior to introducing nitrogen. The formation of extended defects and the resulting strain relaxation in these lattice-mismatched materials is investigated through extensive structural characterization. Temperature- and power-dependent photoluminescence revealed an inhomogeneous distribution of Sb in GaAsSb films, leading to carrier localization effects at low temperatures. Tuning of the growth parameters was shown to suppress these Sb-induced localized states.

The introduction of nitrogen was then considered and the growth process was optimized to obtain high quality GaNAsSb films lattice-matched to GaAs. Near 1-eV single-junction GaNAsSb solar cells were produced. The best devices used a p-n heterojunction configuration and demonstrated a current density of 20.8 mA/cm2, a fill factor of 64 % and an open-circuit voltage of 0.39 V, corresponding to a bandgap-voltage offset of 0.57 V, comparable with the state-of-the-art for this type of solar cells. Post-growth annealing was found to be essential to improve Voc but was also found to degrade the material quality of the top layers. Alternatives are discussed to improve this process. Unintentional high background doping was identified as the main factor limiting the device performance. The use of Bi-surfactant mediated growth is proposed for the first time for this material system to reduce this background doping and preliminary results are presented.
ContributorsMaros, Aymeric (Author) / King, Richard R. (Thesis advisor) / Honsberg, C. (Christiana B.) (Committee member) / Goodnick, Stephen M. (Committee member) / Ponce, Fernando A. (Committee member) / Arizona State University (Publisher)
Created2017
155873-Thumbnail Image.png
Description
Visible light communication (VLC) is the promise of a high data rate wireless network for both indoor and outdoor uses. It competes with 5G radio frequency (RF) system as well. Even though the breakthrough of Gallium Nitride (GaN) based micro-light-emitting-diodes (micro-LEDs) enhances the -3dB modulation bandwidth dramatically from tens of

Visible light communication (VLC) is the promise of a high data rate wireless network for both indoor and outdoor uses. It competes with 5G radio frequency (RF) system as well. Even though the breakthrough of Gallium Nitride (GaN) based micro-light-emitting-diodes (micro-LEDs) enhances the -3dB modulation bandwidth dramatically from tens of MHz to hundreds of MHz, the optical power onto a fast photo receiver drops exponentially. It determines the signal to noise ratio (SNR) of VLC. For full implementation of the useful high data-rate VLC link enabled by a GaN-based micro-LED, it needs focusing optics and a tracking system. In this dissertation, we demonstrate a novel active on-chip monitoring system for VLC using a GaN-based micro-LED and none-return-to-zero on-off keying (NRZ-OOK) modulation scheme. By this innovative technique without manual focusing, the field of view (FOV) was enlarged to 120° and data rates up to 600 Mbps at a bit error rate (BER) of 2.1×10⁻⁴ were achieved. This work demonstrates the establishment of a VLC physical link. It shows improved communication quality by orders, making it optimized for real communications.

This dissertation also gives an experimental demonstration of non-line-of-sight (NLOS) visible light communication (VLC) using a single 80 μm gallium nitride (GaN) based micro-light-emitting diode (micro-LED). IEEE 802.11ac modulation scheme with 80 MHz bandwidth, as an entry level of the fifth generation of Wi-Fi, was employed to use the micro-LED bandwidth efficiently. These practical techniques were successfully utilized to achieve a demonstration of line-of-sight (LOS) VLC at a speed of 433 Mbps, and a bit error rate (BER) of 10⁻⁵ with a free space transmit distance 3.6 m. Besides this, we demonstrated directed NLOS VLC links based on mirror reflections with a data rate of 433 Mbps and a BER of 10⁻⁴. For non-directed NLOS VLC using a print paper as the reflective material, 195 Mbps data rate and a BER of 10⁻⁵ was achieved.
ContributorsLu, Zhijian (Author) / Zhao, Yuji (Thesis advisor) / Yu, Hongbin (Committee member) / Song, Hongjiang (Committee member) / Bliss, Daniel (Committee member) / Arizona State University (Publisher)
Created2017