Matching Items (8)

128498-Thumbnail Image.png

Total Extracellular Small RNA Profiles from Plasma, Saliva, and Urine of Healthy Subjects

Description

Interest in circulating RNAs for monitoring and diagnosing human health has grown significantly. There are few datasets describing baseline expression levels for total cell-free circulating RNA from healthy control subjects.

Interest in circulating RNAs for monitoring and diagnosing human health has grown significantly. There are few datasets describing baseline expression levels for total cell-free circulating RNA from healthy control subjects. In this study, total extracellular RNA (exRNA) was isolated and sequenced from 183 plasma samples, 204 urine samples and 46 saliva samples from 55 male college athletes ages 18–25 years. Many participants provided more than one sample, allowing us to investigate variability in an individual’s exRNA expression levels over time. Here we provide a systematic analysis of small exRNAs present in each biofluid, as well as an analysis of exogenous RNAs. The small RNA profile of each biofluid is distinct. We find that a large number of RNA fragments in plasma (63%) and urine (54%) have sequences that are assigned to YRNA and tRNA fragments respectively. Surprisingly, while many miRNAs can be detected, there are few miRNAs that are consistently detected in all samples from a single biofluid, and profiles of miRNA are different for each biofluid. Not unexpectedly, saliva samples have high levels of exogenous sequence that can be traced to bacteria. These data significantly contribute to the current number of sequenced exRNA samples from normal healthy individuals.

Contributors

Agent

Created

Date Created
  • 2017-03-17

128939-Thumbnail Image.png

AKT Pathway Genes Define 5 Prognostic Subgroups in Glioblastoma

Description

Activity of GFR/PI3K/AKT pathway inhibitors in glioblastoma clinical trials has not been robust. We hypothesized variations in the pathway between tumors contribute to poor response. We clustered GBM based on

Activity of GFR/PI3K/AKT pathway inhibitors in glioblastoma clinical trials has not been robust. We hypothesized variations in the pathway between tumors contribute to poor response. We clustered GBM based on AKT pathway genes and discovered new subtypes then characterized their clinical and molecular features. There are at least 5 GBM AKT subtypes having distinct DNA copy number alterations, enrichment in oncogenes and tumor suppressor genes and patterns of expression for PI3K/AKT/mTOR signaling components. Gene Ontology terms indicate a different cell of origin or dominant phenotype for each subgroup. Evidence suggests one subtype is very sensitive to BCNU or CCNU (median survival 5.8 vs. 1.5 years; BCNU/CCNU vs other treatments; respectively). AKT subtyping advances previous approaches by revealing additional subgroups with unique clinical and molecular features. Evidence indicates it is a predictive marker for response to BCNU or CCNU and PI3K/AKT/mTOR pathway inhibitors. We anticipate Akt subtyping may help stratify patients for clinical trials and augment discovery of class-specific therapeutic targets.

Contributors

Agent

Created

Date Created
  • 2014-07-01

151180-Thumbnail Image.png

Computational methods for knowledge integration in the analysis of large-scale biological networks

Description

As we migrate into an era of personalized medicine, understanding how bio-molecules interact with one another to form cellular systems is one of the key focus areas of systems biology.

As we migrate into an era of personalized medicine, understanding how bio-molecules interact with one another to form cellular systems is one of the key focus areas of systems biology. Several challenges such as the dynamic nature of cellular systems, uncertainty due to environmental influences, and the heterogeneity between individual patients render this a difficult task. In the last decade, several algorithms have been proposed to elucidate cellular systems from data, resulting in numerous data-driven hypotheses. However, due to the large number of variables involved in the process, many of which are unknown or not measurable, such computational approaches often lead to a high proportion of false positives. This renders interpretation of the data-driven hypotheses extremely difficult. Consequently, a dismal proportion of these hypotheses are subject to further experimental validation, eventually limiting their potential to augment existing biological knowledge. This dissertation develops a framework of computational methods for the analysis of such data-driven hypotheses leveraging existing biological knowledge. Specifically, I show how biological knowledge can be mapped onto these hypotheses and subsequently augmented through novel hypotheses. Biological hypotheses are learnt in three levels of abstraction -- individual interactions, functional modules and relationships between pathways, corresponding to three complementary aspects of biological systems. The computational methods developed in this dissertation are applied to high throughput cancer data, resulting in novel hypotheses with potentially significant biological impact.

Contributors

Agent

Created

Date Created
  • 2012

150114-Thumbnail Image.png

A computational framework to model and learn context-specific gene regulatory networks from multi-source data

Description

Reverse engineering gene regulatory networks (GRNs) is an important problem in the domain of Systems Biology. Learning GRNs is challenging due to the inherent complexity of the real regulatory networks

Reverse engineering gene regulatory networks (GRNs) is an important problem in the domain of Systems Biology. Learning GRNs is challenging due to the inherent complexity of the real regulatory networks and the heterogeneity of samples in available biomedical data. Real world biological data are commonly collected from broad surveys (profiling studies) and aggregate highly heterogeneous biological samples. Popular methods to learn GRNs simplistically assume a single universal regulatory network corresponding to available data. They neglect regulatory network adaptation due to change in underlying conditions and cellular phenotype or both. This dissertation presents a novel computational framework to learn common regulatory interactions and networks underlying the different sets of relatively homogeneous samples from real world biological data. The characteristic set of samples/conditions and corresponding regulatory interactions defines the cellular context (context). Context, in this dissertation, represents the deterministic transcriptional activity within the specific cellular regulatory mechanism. The major contributions of this framework include - modeling and learning context specific GRNs; associating enriched samples with contexts to interpret contextual interactions using biological knowledge; pruning extraneous edges from the context-specific GRN to improve the precision of the final GRNs; integrating multisource data to learn inter and intra domain interactions and increase confidence in obtained GRNs; and finally, learning combinatorial conditioning factors from the data to identify regulatory cofactors. The framework, Expattern, was applied to both real world and synthetic data. Interesting insights were obtained into mechanism of action of drugs on analysis of NCI60 drug activity and gene expression data. Application to refractory cancer data and Glioblastoma multiforme yield GRNs that were readily annotated with context-specific phenotypic information. Refractory cancer GRNs also displayed associations between distinct cancers, not observed through only clustering. Performance comparisons on multi-context synthetic data show the framework Expattern performs better than other comparable methods.

Contributors

Agent

Created

Date Created
  • 2011

150901-Thumbnail Image.png

Threshold logic properties and methods: applications to post-CMOS design automation and gene regulation modeling

Description

Threshold logic has been studied by at least two independent group of researchers. One group of researchers studied threshold logic with the intention of building threshold logic circuits. The earliest

Threshold logic has been studied by at least two independent group of researchers. One group of researchers studied threshold logic with the intention of building threshold logic circuits. The earliest research to this end was done in the 1960's. The major work at that time focused on studying mathematical properties of threshold logic as no efficient circuit implementations of threshold logic were available. Recently many post-CMOS (Complimentary Metal Oxide Semiconductor) technologies that implement threshold logic have been proposed along with efficient CMOS implementations. This has renewed the effort to develop efficient threshold logic design automation techniques. This work contributes to this ongoing effort. Another group studying threshold logic did so, because the building block of neural networks - the Perceptron, is identical to the threshold element implementing a threshold function. Neural networks are used for various purposes as data classifiers. This work contributes tangentially to this field by proposing new methods and techniques to study and analyze functions implemented by a Perceptron After completion of the Human Genome Project, it has become evident that most biological phenomenon is not caused by the action of single genes, but due to the complex interaction involving a system of genes. In recent times, the `systems approach' for the study of gene systems is gaining popularity. Many different theories from mathematics and computer science has been used for this purpose. Among the systems approaches, the Boolean logic gene model has emerged as the current most popular discrete gene model. This work proposes a new gene model based on threshold logic functions (which are a subset of Boolean logic functions). The biological relevance and utility of this model is argued illustrated by using it to model different in-vivo as well as in-silico gene systems.

Contributors

Agent

Created

Date Created
  • 2012

151940-Thumbnail Image.png

Gene regulatory networks: modeling, intervention and context

Description

Biological systems are complex in many dimensions as endless transportation and communication networks all function simultaneously. Our ability to intervene within both healthy and diseased systems is tied directly to

Biological systems are complex in many dimensions as endless transportation and communication networks all function simultaneously. Our ability to intervene within both healthy and diseased systems is tied directly to our ability to understand and model core functionality. The progress in increasingly accurate and thorough high-throughput measurement technologies has provided a deluge of data from which we may attempt to infer a representation of the true genetic regulatory system. A gene regulatory network model, if accurate enough, may allow us to perform hypothesis testing in the form of computational experiments. Of great importance to modeling accuracy is the acknowledgment of biological contexts within the models -- i.e. recognizing the heterogeneous nature of the true biological system and the data it generates. This marriage of engineering, mathematics and computer science with systems biology creates a cycle of progress between computer simulation and lab experimentation, rapidly translating interventions and treatments for patients from the bench to the bedside. This dissertation will first discuss the landscape for modeling the biological system, explore the identification of targets for intervention in Boolean network models of biological interactions, and explore context specificity both in new graphical depictions of models embodying context-specific genomic regulation and in novel analysis approaches designed to reveal embedded contextual information. Overall, the dissertation will explore a spectrum of biological modeling with a goal towards therapeutic intervention, with both formal and informal notions of biological context, in such a way that will enable future work to have an even greater impact in terms of direct patient benefit on an individualized level.

Contributors

Agent

Created

Date Created
  • 2013

Robust margin based classifiers for small sample data

Description

In many classication problems data samples cannot be collected easily, example in drug trials, biological experiments and study on cancer patients. In many situations the data set size is small

In many classication problems data samples cannot be collected easily, example in drug trials, biological experiments and study on cancer patients. In many situations the data set size is small and there are many outliers. When classifying such data, example cancer vs normal patients the consequences of mis-classication are probably more important than any other data type, because the data point could be a cancer patient or the classication decision could help determine what gene might be over expressed and perhaps a cause of cancer. These mis-classications are typically higher in the presence of outlier data points. The aim of this thesis is to develop a maximum margin classier that is suited to address the lack of robustness of discriminant based classiers (like the Support Vector Machine (SVM)) to noise and outliers. The underlying notion is to adopt and develop a natural loss function that is more robust to outliers and more representative of the true loss function of the data. It is demonstrated experimentally that SVM's are indeed susceptible to outliers and that the new classier developed, here coined as Robust-SVM (RSVM), is superior to all studied classier on the synthetic datasets. It is superior to the SVM in both the synthetic and experimental data from biomedical studies and is competent to a classier derived on similar lines when real life data examples are considered.

Contributors

Agent

Created

Date Created
  • 2011

150126-Thumbnail Image.png

Signaling pathway deregulation: identification through genomic aberrations and verification through genomic activity

Description

Given the process of tumorigenesis, biological signaling pathways have become of interest in the field of oncology. Many of the regulatory mechanisms that are altered in cancer are directly

Given the process of tumorigenesis, biological signaling pathways have become of interest in the field of oncology. Many of the regulatory mechanisms that are altered in cancer are directly related to signal transduction and cellular communication. Thus, identifying signaling pathways that have become deregulated may provide useful information to better understanding altered regulatory mechanisms within cancer. Many methods that have been created to measure the distinct activity of signaling pathways have relied strictly upon transcription profiles. With advancements in comparative genomic hybridization techniques, copy number data has become extremely useful in providing valuable information pertaining to the genomic landscape of cancer. The purpose of this thesis is to develop a methodology that incorporates both gene expression and copy number data to identify signaling pathways that have become deregulated in cancer. The central idea is that copy number data may significantly assist in identifying signaling pathway deregulation by justifying the aberrant activity being measured in gene expression profiles. This method was then applied to four different subtypes of breast cancer resulting in the identification of signaling pathways associated with distinct functionalities for each of the breast cancer subtypes.

Contributors

Agent

Created

Date Created
  • 2011