Matching Items (1)

158347-Thumbnail Image.png

Transitions in Eruption Style at La Fossa Cone, Vulcano Island, Italy

Description

Volcanoes can experience multiple eruption styles throughout their eruptive histories. Among the most complex and most common are eruptions of intermediate explosivity, such as Vulcanian and sub-Plinian eruptions. Vulcanian eruptions

Volcanoes can experience multiple eruption styles throughout their eruptive histories. Among the most complex and most common are eruptions of intermediate explosivity, such as Vulcanian and sub-Plinian eruptions. Vulcanian eruptions are characterized by small-scale, short-lived, ash-rich eruptions initiated by the failure of a dense magma plug or overlying dome that had sealed an overpressured conduit. Sub-Plinian eruptions are characterized by sustained columns that reach tens of kilometers in height.

Multiple eruption styles can be observed in a single eruptive sequence. In recent decades, transitions in eruption style during well-documented eruptions have been described in detail, with some workers proposing explanatory mechanisms for the transitions. These proposed mechanisms may be broadly classified into processes at depth, processes in the conduit, or some combination of both.

The present study is focused on the Pietre Cotte sequence because it may have encompassed up to three different eruptive cycles, each representing different degrees of explosivity. The first deposits are composed of repeated layers of fine ash and lapilli composed of latite and rhyolite endmembers, efficiently mixed at sub-cm scales. The thin layers and bubble/crystal textures indicate that the magma underwent numerous decompressions and open-system degassing, and that the eruptions waned with time. The second phase of the sequence appears to have been initiated by cm-scale mixing between a volatile-rich, mafic magma from deeper in the system and a shallow silicic body. Textures indicate that the magma ascended rapidly and experienced little to no open-system degassing. The final phase of the sequence again produced repeated layers of fine ash and lapilli, of uniform trachyte composition, and waned with time. The first and last phases were likely produced in Vulcanian eruptions, while the pumice-rich layers were likely produced in Vulcanian to sub-Plinian eruptions.

In summary, the Pietre Cotte sequence is characterized by up to three magma recharge events in ~200 years. The differences in eruptive style appear to have been controlled by variations in the volatile content of the recharge magma, as well as the efficiency and scale of magma mixing and resulting overpressures.

Contributors

Agent

Created

Date Created
  • 2020