Matching Items (37)
156187-Thumbnail Image.png
Description
This thesis focuses on studying the interaction between floating objects and an air-water flow system driven by gravity. The system consists of an inclined channel in which a gravity driven two phase flow carries a series of floating solid objects downstream. Numerical simulations of such a system requires the solution

This thesis focuses on studying the interaction between floating objects and an air-water flow system driven by gravity. The system consists of an inclined channel in which a gravity driven two phase flow carries a series of floating solid objects downstream. Numerical simulations of such a system requires the solution of not only the basic Navier-Stokes equation but also dynamic interaction between the solid body and the two-phase flow. In particular, this requires embedding of dynamic mesh within the two-phase flow. A computational fluid dynamics solver, ANSYS fluent, is used to solve this problem. Also, the individual components for these simulations are already available in the solver, few examples exist in which all are combined. A series of simulations are performed by varying the key parameters, including density of floating objects and mass flow rate at the inlet. The motion of the floating objects in those simulations are analyzed to determine the stability of the coupled flow-solid system. The simulations are successfully performed over a broad range of parametric values. The numerical framework developed in this study can potentially be used in applications, especially in assisting the design of similar gravity driven systems for transportation in manufacturing processes. In a small number of the simulations, two kinds of numerically instability are observed. One is characterized by a sudden vertical acceleration of the floating object due to a strong imbalance of the force acting on the body, which occurs when the mass flow of water is weak. The other is characterized by a sudden vertical movement of air-water interface, which occurs when two floating objects become too close together. These new types of numerical instability deserve future studies and clarifications. This study is performed only for a 2-D system. Extension of the numerical framework to a full 3-D setting is recommended as future work.
ContributorsMangavelli, Sai Chaitanya (Author) / Huang, Huei-Ping (Thesis advisor) / Kim, Jeonglae (Committee member) / Forzani, Erica (Committee member) / Arizona State University (Publisher)
Created2018
157389-Thumbnail Image.png
Description
In these times of increasing industrialization, there arises a need for effective and energy efficient heat transfer/heat exchange devices. The focus nowadays is on identifying various methods and techniques which can aid the process of developing energy efficient devices. One of the most common heat transfer devices is a heat

In these times of increasing industrialization, there arises a need for effective and energy efficient heat transfer/heat exchange devices. The focus nowadays is on identifying various methods and techniques which can aid the process of developing energy efficient devices. One of the most common heat transfer devices is a heat exchanger. Heat exchangers are an essential commodity to any industry and their efficiency can play an important role in making industries energy efficient and reduce the energy losses in the devices, in turn decreasing energy inputs to run the industry.

One of the ways in which we can improve the efficiency of heat exchangers is by applying ultrasonic energy to a heat exchanger. This research explores the possibility of introducing the external input of ultrasonic energy to increase the efficiency of the heat exchanger. This increase in efficiency can be estimated by calculating the parameters important for the characterization of a heat exchanger, which are effectiveness (ε) and overall heat transfer coefficient (U). These parameters are calculated for both the non-ultrasound and ultrasound conditions in the heat exchanger.

This a preliminary study of ultrasound and its effect on a conventional shell-and-coil heat exchanger. From the data obtained it can be inferred that the increase in effectiveness and overall heat transfer coefficient upon the application of ultrasound is 1% and 6.22% respectively.
ContributorsAnnam, Roshan Sameer (Author) / Phelan, Patrick (Thesis advisor) / Rykaczewski, Konrad (Committee member) / Milcarek, Ryan (Committee member) / Arizona State University (Publisher)
Created2019
156839-Thumbnail Image.png
Description
Buildings continue to take up a significant portion of the global energy consumption, meaning there are significant research opportunities in reducing the energy consumption of the building sector. One widely studied area is waste heat recovery. The purpose of this research is to test a prototype thermogalvanic cell in the

Buildings continue to take up a significant portion of the global energy consumption, meaning there are significant research opportunities in reducing the energy consumption of the building sector. One widely studied area is waste heat recovery. The purpose of this research is to test a prototype thermogalvanic cell in the form factor of a UK metric brick sized at 215 mm × 102.5 mm × 65 mm for the experimental power output using a copper/copper(II) (Cu/Cu2+) based aqueous electrode. In this study the thermogalvanic brick uses a 0.7 M CuSO4 + 0.1 M H2SO4 aqueous electrolyte with copper electrodes as two of the walls. The other walls of the thermogalvanic brick are made of 5.588 mm (0.22 in) thick acrylic sheet. Internal to the brick, a 0.2 volume fraction minimal surface Schwartz diamond (Schwartz D) structure made of ABS, Polycarbonate-ABS (PCABS), and Polycarbonate-Carbon Fiber (PCCF) was tested to see the effects on the power output of the thermogalvanic brick. By changing the size of the thermogalvanic cell into that of a brick will allow this thermogalvanic cell to become the literal building blocks of green buildings. The thermogalvanic brick was tested by applying a constant power to the strip heater attached to the hot side of the brick, resulting in various ∆T values between 8◦C and 15◦C depending on the material of Schwartz D inside. From this, it was found that a single Cu/Cu2+ thermogalvanic brick containing the PCCF or PCABS Schwartz D performed equivalently well at a 163.8% or 164.9%, respectively, higher normalized power density output than the control brick containing only electrolyte solution.
ContributorsLee, William J. (Author) / Phelan, Patrick (Thesis advisor) / El Asmar, Mounir (Committee member) / Milcarek, Ryan (Committee member) / Arizona State University (Publisher)
Created2018
157292-Thumbnail Image.png
Description
Autonomic closure is a new general methodology for subgrid closures in large eddy simulations that circumvents the need to specify fixed closure models and instead allows a fully- adaptive self-optimizing closure. The closure is autonomic in the sense that the simulation itself determines the optimal relation at each point and

Autonomic closure is a new general methodology for subgrid closures in large eddy simulations that circumvents the need to specify fixed closure models and instead allows a fully- adaptive self-optimizing closure. The closure is autonomic in the sense that the simulation itself determines the optimal relation at each point and time between any subgrid term and the variables in the simulation, through the solution of a local system identification problem. It is based on highly generalized representations of subgrid terms having degrees of freedom that are determined dynamically at each point and time in the simulation. This can be regarded as a very high-dimensional generalization of the dynamic approach used with some traditional prescribed closure models, or as a type of “data-driven” turbulence closure in which machine- learning methods are used with internal training data obtained at a test-filter scale at each point and time in the simulation to discover the local closure representation.

In this study, a priori tests were performed to develop accurate and efficient implementations of autonomic closure based on particular generalized representations and parameters associated with the local system identification of the turbulence state. These included the relative number of training points and bounding box size, which impact computational cost and generalizability of coefficients in the representation from the test scale to the LES scale. The focus was on studying impacts of these factors on the resulting accuracy and efficiency of autonomic closure for the subgrid stress. Particular attention was paid to the associated subgrid production field, including its structural features in which large forward and backward energy transfer are concentrated.

More than five orders of magnitude reduction in computational cost of autonomic closure was achieved in this study with essentially no loss of accuracy, primarily by using efficient frame-invariant forms for generalized representations that greatly reduce the number of degrees of freedom. The recommended form is a 28-coefficient representation that provides subgrid stress and production fields that are far more accurate in terms of structure and statistics than are traditional prescribed closure models.
ContributorsKshitij, Abhinav (Author) / Dahm, Werner J.A. (Thesis advisor) / Herrmann, Marcus (Committee member) / Hamlington, Peter E (Committee member) / Peet, Yulia (Committee member) / Kim, Jeonglae (Committee member) / Arizona State University (Publisher)
Created2019
148155-Thumbnail Image.png
Description

A novel concept for integration of flame-assisted fuel cells (FFC) with a gas turbine is analyzed in this paper. Six different fuels (CH4, C3H8, JP-4, JP-5, JP-10(L), and H2) are investigated for the analytical model of the FFC integrated gas turbine hybrid system. As equivalence ratio increases, the efficiency of

A novel concept for integration of flame-assisted fuel cells (FFC) with a gas turbine is analyzed in this paper. Six different fuels (CH4, C3H8, JP-4, JP-5, JP-10(L), and H2) are investigated for the analytical model of the FFC integrated gas turbine hybrid system. As equivalence ratio increases, the efficiency of the hybrid system increases initially then decreases because the decreasing flow rate of air begins to outweigh the increasing hydrogen concentration. This occurs at an equivalence ratio of 2 for CH4. The thermodynamic cycle is analyzed using a temperature entropy diagram and a pressure volume diagram. These thermodynamic diagrams show as equivalence ratio increases, the power generated by the turbine in the hybrid setup decreases. Thermodynamic analysis was performed to verify that energy is conserved and the total chemical energy going into the system was equal to the heat rejected by the system plus the power generated by the system. Of the six fuels, the hybrid system performs best with H2 as the fuel. The electrical efficiency with H2 is predicted to be 27%, CH4 is 24%, C3H8 is 22%, JP-4 is 21%, JP-5 is 20%, and JP-10(L) is 20%. When H2 fuel is used, the overall integrated system is predicted to be 24.5% more efficient than the standard gas turbine system. The integrated system is predicted to be 23.0% more efficient with CH4, 21.9% more efficient with C3H8, 22.7% more efficient with JP-4, 21.3% more efficient with JP-5, and 20.8% more efficient with JP-10(L). The sensitivity of the model is investigated using various fuel utilizations. When CH4 fuel is used, the integrated system is predicted to be 22.7% more efficient with a fuel utilization efficiency of 90% compared to that of 30%.

ContributorsRupiper, Lauren Nicole (Author) / Milcarek, Ryan (Thesis director) / Wang, Liping (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School for Engineering of Matter,Transport & Enrgy (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Particle Image Velocimetry (PIV) has become a cornerstone of modern experimental fluid mechanics due to its unique ability to resolve the entire instantaneous two-dimensional velocity field of an experimental flow. However, this methodology has historically been omitted from undergraduate curricula due to the significant cost of research-grade PIV systems and

Particle Image Velocimetry (PIV) has become a cornerstone of modern experimental fluid mechanics due to its unique ability to resolve the entire instantaneous two-dimensional velocity field of an experimental flow. However, this methodology has historically been omitted from undergraduate curricula due to the significant cost of research-grade PIV systems and safety considerations stemming from the high-power Nd-YAG lasers typically implemented by PIV systems. In the following undergraduate thesis, a low-cost model of a PIV system is designed to be used within the context of an undergraduate fluid mechanics lab. The proposed system consists of a Hele-Shaw water tunnel, a high-power LED lighting source, and a modern smartphone camera. Additionally, a standalone application was developed to perform the necessary image processing as well as to perform Particle Streak Velocimetry (PSV) and PIV image analysis. Ultimately, the proposed system costs $229.33 and can replicate modern PIV techniques albeit for simple flow scenarios.

ContributorsZamora, Matthew Alan (Author) / Adrian, Ronald (Thesis director) / Kim, Jeonglae (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
171815-Thumbnail Image.png
Description
Advanced fibrous composite materials exhibit outstanding thermomechanical performance under extreme environments, which make them ideal for structural components that are used in a wide range of aerospace, nuclear, and defense applications. The integrity and residual useful life of these components, however, are strongly influenced by their inherent material flaws and

Advanced fibrous composite materials exhibit outstanding thermomechanical performance under extreme environments, which make them ideal for structural components that are used in a wide range of aerospace, nuclear, and defense applications. The integrity and residual useful life of these components, however, are strongly influenced by their inherent material flaws and defects resulting from the complex fabrication processes. These defects exist across multiple length scales and govern several scale-dependent inelastic deformation mechanisms of each of the constituents as well as their composite damage anisotropy. Tailoring structural components for optimal performance requires addressing the knowledge gap regarding the microstructural material morphology that governs the structural scale damage and failure response. Therefore, there is a need for a high-fidelity multiscale modeling framework and scale-specific in-situ experimental characterization that can capture complex inelastic mechanisms, including damage initiation and propagation across multiple length scales. This dissertation presents a novel multiscale computational framework that accounts for experimental information pertinent to microstructure morphology and architectural variabilities to investigate the response of ceramic matrix composites (CMCs) with manufacturing-induced defects. First, a three-dimensional orthotropic viscoplasticity creep formulation is developed to capture the complex temperature- and time-dependent constituent load transfer mechanisms in different CMC material systems. The framework also accounts for a reformulated fracture mechanics-informed matrix damage model and the Curtin progressive fiber damage model to capture the complex scale-dependent damage and failure mechanisms through crack kinetics and porosity growth. Next, in-situ experiments using digital image correlation (DIC) are performed to capture the damage and failure mechanisms in CMCs and to validate the high-fidelity modeling results. The dissertation also presents an exhaustive experimental investigation into the effects of temperature and manufacturing-induced defects on toughened epoxy adhesives and hybrid composite-metallic bonded joints. Nondestructive evaluation techniques are utilized to characterize the inherent defects morphology of the bulk adhesives and bonded interface. This is followed by quasi-static tensile tests conducted at extreme hot and cold temperature conditions. The damage mechanisms and failure modes are investigated using in-situ DIC and a high-resolution camera. The information from the morphology characterization studies is used to reconstruct high-fidelity geometries of the test specimens for finite element analysis.
ContributorsKhafagy, Khaled Hassan Abdo (Author) / Chattopadhyay, Aditi (Thesis advisor) / Fard, Masoud Y. (Committee member) / Milcarek, Ryan (Committee member) / Stoumbos, Tom (Committee member) / Borkowski, Luke (Committee member) / Arizona State University (Publisher)
Created2022
189345-Thumbnail Image.png
Description
The current work aims to understand the influence of particles on scalar transport in particle-laden turbulent jets using point-particle direct numerical simulations (DNS). Such turbulence phenomena are observed in many applications, such as aircraft and rocket engines (e.g., engines operating in dusty environments and when close to the surface) and

The current work aims to understand the influence of particles on scalar transport in particle-laden turbulent jets using point-particle direct numerical simulations (DNS). Such turbulence phenomena are observed in many applications, such as aircraft and rocket engines (e.g., engines operating in dusty environments and when close to the surface) and geophysical flows (sediment-laden rivers discharging nutrients into the oceans), etc.This thesis looks at systematically understanding the fundamental interplay between (1) fluid turbulence, (2) inertial particles, and (3) scalar transport. This work considers a temporal jet of Reynolds number of 5000 filled with the point-particles and the influence of Stokes number (St). Three Stokes numbers, St = 1, 7.5, and 20, were considered for the current work. The simulations were solved using the NGA solver, which solves the Navier-Stokes, advection-diffusion, and particle transport equations. The statistical analysis of the mean and turbulence quantities, along with the Reynolds stresses, are estimated for the fluid and particle phases throughout the domain. The observations do not show a significant influence of St in the mean flow evolution of fluid, scalar, and particle phases. The scalar mixture fraction variance and the turbulent kinetic energy (TKE) increase slightly for the St = 1 case, compared to the particle-free and higher St cases, indicating that an optimal St exists for which the scalar variation increases. The current preliminary study establishes that the scalar variance is influenced by particles under the optimal particle St. Directions for future studies based on the current observations are presented.
ContributorsPaturu, Venkata Sai Sushant (Author) / Pathikonda, Gokul (Thesis advisor) / Kasbaoui, Mohamed Houssem (Committee member) / Kim, Jeonglae (Committee member) / Prabhakaran, Prasanth (Committee member) / Arizona State University (Publisher)
Created2023
187669-Thumbnail Image.png
Description
Advancements to a dual scale Large Eddy Simulation (LES) modeling approach for immiscible turbulent phase interfaces are presented. In the dual scale LES approach, a high resolution auxiliary grid, used to capture a fully resolved interface geometry realization, is linked to an LES grid that solves the filtered Navier-Stokes equations.

Advancements to a dual scale Large Eddy Simulation (LES) modeling approach for immiscible turbulent phase interfaces are presented. In the dual scale LES approach, a high resolution auxiliary grid, used to capture a fully resolved interface geometry realization, is linked to an LES grid that solves the filtered Navier-Stokes equations. Exact closure of the sub-filter interface terms is provided by explicitly filtering the fully resolved quantities from the auxiliary grid. Reconstructing a fully resolved velocity field to advance the phase interface requires modeling several sub-filter effects, including shear and accelerational instabilities and phase change. Two sub-filter models were developed to generate these sub-filter hydrodynamic instabilities: an Orr-Sommerfeld model and a Volume-of-Fluid (VoF) vortex sheet method. The Orr-Sommerfeld sub-filter model was found to be incompatible with the dual scale approach, since it is unable to generate interface rollup and a process to separate filtered and sub-filter scales could not be established. A novel VoF vortex sheet method was therefore proposed, since prior vortex methods have demonstrated interface rollup and following the LES methodology, the vortex sheet strength could be decomposed into its filtered and sub-filter components. In the development of the VoF vortex sheet method, it was tested with a variety of classical hydrodynamic instability problems, compared against prior work and linear theory, and verified using Direct Numerical Simulations (DNS). An LES consistent approach to coupling the VoF vortex sheet with the LES filtered equations is presented and compared against DNS. Finally, a sub-filter phase change model is proposed and assessed in the dual scale LES framework with an evaporating interface subjected to decaying homogeneous isotropic turbulence. Results are compared against DNS and the interplay between surface tension forces and evaporation are discussed.
ContributorsGoodrich, Austin Chase (Author) / Herrmann, Marcus (Thesis advisor) / Dahm, Werner (Committee member) / Kim, Jeonglae (Committee member) / Huang, Huei-Ping (Committee member) / Kostelich, Eric (Committee member) / Arizona State University (Publisher)
Created2023
Description

This paper explores to mitigate the issue of Formula SAE brakes vaporizing by creating a computational model to determine when the fluid may boil given a velocity profile and brake geometry. The paper explores various parameters and assumptions and how they may lead to error determining when the brake fluid

This paper explores to mitigate the issue of Formula SAE brakes vaporizing by creating a computational model to determine when the fluid may boil given a velocity profile and brake geometry. The paper explores various parameters and assumptions and how they may lead to error determining when the brake fluid will vaporize. Common assumptions such as a constant convection coefficient are questioned throughout the paper and compared to methods requiring higher computational power. Throughout this model, a significant dependence on the heat partition factor is found on the final steady state temperature of the brake fluid is found, and a sensitivity analysis is performed to determine the effect of its variation.

ContributorsWesterhoff, Andrew (Author) / Kwon, Beomjin (Thesis director) / Milcarek, Ryan (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05