Matching Items (9)

135739-Thumbnail Image.png

Compression in Self-Organizing Particle Systems

Description

Many programmable matter systems have been proposed and realized recently, each often tailored toward a particular task or physical setting. In our work on self-organizing particle systems, we abstract away

Many programmable matter systems have been proposed and realized recently, each often tailored toward a particular task or physical setting. In our work on self-organizing particle systems, we abstract away from specific settings and instead describe programmable matter as a collection of simple computational elements (to be referred to as particles) with limited computational power that each perform fully distributed, local, asynchronous algorithms to solve system-wide problems of movement, configuration, and coordination. In this thesis, we focus on the compression problem, in which the particle system gathers as tightly together as possible, as in a sphere or its equivalent in the presence of some underlying geometry. While there are many ways to formalize what it means for a particle system to be compressed, we address three different notions of compression: (1) local compression, in which each individual particle utilizes local rules to create an overall convex structure containing no holes, (2) hole elimination, in which the particle system seeks to detect and eliminate any holes it contains, and (3) alpha-compression, in which the particle system seeks to shrink its perimeter to be within a constant factor of the minimum possible value. We analyze the behavior of each of these algorithms, examining correctness and convergence where appropriate. In the case of the Markov Chain Algorithm for Compression, we provide improvements to the original bounds for the bias parameter lambda which influences the system to either compress or expand. Lastly, we briefly discuss contributions to the problem of leader election--in which a particle system elects a single leader--since it acts as an important prerequisite for compression algorithms that use a predetermined seed particle.

Contributors

Created

Date Created
  • 2016-05

132775-Thumbnail Image.png

Skipping Turns on the Ordering Game

Description

In the ordering game on a graph G, Alice and Bob take turns placing the vertices of G into a linear ordering. The score of the game is the maximum

In the ordering game on a graph G, Alice and Bob take turns placing the vertices of G into a linear ordering. The score of the game is the maximum number of neighbors that any vertex has before it in the ordering. Alice's goal in the ordering game is to minimize the score, while Bob's goal is to maximize it. The game coloring number is the least score that Alice can always guarantee in the ordering game, no matter how Bob plays. This paper examines what happens to the game coloring number if Alice or Bob skip turns on the ordering game. Preliminary definitions and examples are provided to give context to the ordering game. These include a polynomial time algorithm to compute the coloring number, a non-competitive version of the game coloring number. The notion of the preordered game is introduced as the primary tool of the paper, along with its naturally defined preordered game coloring number. To emphasize the complex relationship between the coloring number and the preordered game coloring number, a non-polynomial time strategy is given to Alice and Bob that yields the preordered game coloring number on any graph. Additionally, the preordered game coloring number is shown to be monotonic, one of the most useful properties for turn-skipping. Techniques developed throughout the paper are then used to determine that Alice cannot reduce the score and Bob cannot improve the score by skipping any number of their respective turns. This paper can hopefully be used as a stepping stone towards bounding the score on graphs when vertices are removed, as well as in deciphering further properties of the asymmetric marking game.

Contributors

Created

Date Created
  • 2019-05

151578-Thumbnail Image.png

Coloring graphs from almost maximum degree sized palettes

Description

Every graph can be colored with one more color than its maximum degree. A well-known theorem of Brooks gives the precise conditions under which a graph can be colored with

Every graph can be colored with one more color than its maximum degree. A well-known theorem of Brooks gives the precise conditions under which a graph can be colored with maximum degree colors. It is natural to ask for the required conditions on a graph to color with one less color than the maximum degree; in 1977 Borodin and Kostochka conjectured a solution for graphs with maximum degree at least 9: as long as the graph doesn't contain a maximum-degree-sized clique, it can be colored with one fewer than the maximum degree colors. This study attacks the conjecture on multiple fronts. The first technique is an extension of a vertex shuffling procedure of Catlin and is used to prove the conjecture for graphs with edgeless high vertex subgraphs. This general approach also bears more theoretical fruit. The second technique is an extension of a method Kostochka used to reduce the Borodin-Kostochka conjecture to the maximum degree 9 case. Results on the existence of independent transversals are used to find an independent set intersecting every maximum clique in a graph. The third technique uses list coloring results to exclude induced subgraphs in a counterexample to the conjecture. The classification of such excludable graphs that decompose as the join of two graphs is the backbone of many of the results presented here. The fourth technique uses the structure theorem for quasi-line graphs of Chudnovsky and Seymour in concert with the third technique to prove the Borodin-Kostochka conjecture for claw-free graphs. The fifth technique adds edges to proper induced subgraphs of a minimum counterexample to gain control over the colorings produced by minimality. The sixth technique adapts a recoloring technique originally developed for strong coloring by Haxell and by Aharoni, Berger and Ziv to general coloring. Using this recoloring technique, the Borodin-Kostochka conjectured is proved for graphs where every vertex is in a large clique. The final technique is naive probabilistic coloring as employed by Reed in the proof of the Borodin-Kostochka conjecture for large maximum degree. The technique is adapted to prove the Borodin-Kostochka conjecture for list coloring for large maximum degree.

Contributors

Agent

Created

Date Created
  • 2013

158314-Thumbnail Image.png

Estimating Low Generalized Coloring Numbers of Planar Graphs

Description

The chromatic number $\chi(G)$ of a graph $G=(V,E)$ is the minimum

number of colors needed to color $V(G)$ such that no adjacent vertices

receive the same color. The coloring number $\col(G)$ of

The chromatic number $\chi(G)$ of a graph $G=(V,E)$ is the minimum

number of colors needed to color $V(G)$ such that no adjacent vertices

receive the same color. The coloring number $\col(G)$ of a graph

$G$ is the minimum number $k$ such that there exists a linear ordering

of $V(G)$ for which each vertex has at most $k-1$ backward neighbors.

It is well known that the coloring number is an upper bound for the

chromatic number. The weak $r$-coloring number $\wcol_{r}(G)$ is

a generalization of the coloring number, and it was first introduced

by Kierstead and Yang \cite{77}. The weak $r$-coloring number $\wcol_{r}(G)$

is the minimum integer $k$ such that for some linear ordering $L$

of $V(G)$ each vertex $v$ can reach at most $k-1$ other smaller

vertices $u$ (with respect to $L$) with a path of length at most

$r$ and $u$ is the smallest vertex in the path. This dissertation proves that $\wcol_{2}(G)\le23$ for every planar graph $G$.

The exact distance-$3$ graph $G^{[\natural3]}$ of a graph $G=(V,E)$

is a graph with $V$ as its set of vertices, and $xy\in E(G^{[\natural3]})$

if and only if the distance between $x$ and $y$ in $G$ is $3$.

This dissertation improves the best known upper bound of the

chromatic number of the exact distance-$3$ graphs $G^{[\natural3]}$

of planar graphs $G$, which is $105$, to $95$. It also improves

the best known lower bound, which is $7$, to $9$.

A class of graphs is nowhere dense if for every $r\ge 1$ there exists $t\ge 1$ such that no graph in the class contains a topological minor of the complete graph $K_t$ where every edge is subdivided at most $r$ times. This dissertation gives a new characterization of nowhere dense classes using generalized notions of the domination number.

Contributors

Agent

Created

Date Created
  • 2020

156198-Thumbnail Image.png

On the uncrossing partial order on matchings

Description

The uncrossing partially ordered set $P_n$ is defined on the set of matchings on $2n$ points on a circle represented with wires. The order relation is $\tau'\leq \tau$ in $P_n$

The uncrossing partially ordered set $P_n$ is defined on the set of matchings on $2n$ points on a circle represented with wires. The order relation is $\tau'\leq \tau$ in $P_n$ if and only if $\tau'$ is obtained by resolving a crossing of $\tau$. %This partial order has been studied by Alman-Lian-Tran, Huang-Wen-Xie, Kenyon, and Lam. %The posets $P_n$ emerged from studies of circular planar electrical networks. Circular planar electrical networks are finite weighted undirected graphs embedded into a disk, with boundary vertices and interior vertices. By Curtis-Ingerman-Morrow and de Verdi\`ere-Gitler-Vertigan, the electrical networks can be encoded with response matrices. By Lam the space of response matrices for electrical networks has a cell structure, and this cell structure can be described by the uncrossing partial orders. %Lam proves that the posets can be identified with dual Bruhat order on affine permutations of type $(n,2n)$. Using this identification, Lam proves the poset $\hat{P}_n$, the uncrossing poset $P_n$ with a unique minimum element $\hat{0}$ adjoined, is Eulerian. This thesis consists of two sets of results: (1) flag enumeration in intervals in the uncrossing poset $P_n$ and (2) cyclic sieving phenomenon on the set $P_n$.

I identify elements in $P_n$ with affine permutations of type $(0,2n)$. %This identification enables us to explicitly describe the elements in $P_n$ with the elements in $\mathcal{MP}_n$.

Using this identification, I adapt a technique in Reading for finding recursions for the cd-indices of intervals in Bruhat order of Coxeter groups to the uncrossing poset $P_n$. As a result, I produce recursions for the cd-indices of intervals in the uncrossing poset $P_n$. I also obtain a recursion for the ab-indices of intervals in the poset $\hat{P}_n$, the poset $P_n$ with a unique minimum $\hat0$ adjoined. %We define an induced subposet $\mathcal{MP}_n$ of the affine permutations under Bruhat order.

Reiner-Stanton-White defined the cyclic sieving phenomenon (CSP) associated to a finite cyclic group action on a finite set and a polynomial. Sagan observed the CSP on the set of non-crossing matchings with the $q$-Catalan polynomial. Bowling-Liang presented similar results on the set of $k$-crossing matchings for $1\leq k \leq 3$. In this dissertation, I focus on the set of all matchings on $[2n]:=\{1,2,\dots,2n\}$. I find the number of matchings fixed by $\frac{2\pi}{d}$ rotations for $d|2n$. I then find the polynomial $X_n(q)$ such that the set of matchings together with $X_n(q)$ and the cyclic group of order $2n$ exhibits the CSP.

Contributors

Agent

Created

Date Created
  • 2018

154926-Thumbnail Image.png

Toward the enumeration of maximal chains in the Tamari lattices

Description

The Tamari lattices have been intensely studied since they first appeared in Dov Tamari’s thesis around 1952. He defined the n-th Tamari lattice T(n) on bracketings of a set of

The Tamari lattices have been intensely studied since they first appeared in Dov Tamari’s thesis around 1952. He defined the n-th Tamari lattice T(n) on bracketings of a set of n+1 objects, with a cover relation based on the associativity rule in one direction. Despite their interesting aspects and the attention they have received, a formula for the number of maximal chains in the Tamari lattices is still unknown. The purpose of this thesis is to convey my results on progress toward the solution of this problem and to discuss future work.

A few years ago, Bergeron and Préville-Ratelle generalized the Tamari lattices to the m-Tamari lattices. The original Tamari lattices T(n) are the case m=1. I establish a bijection between maximum length chains in the m-Tamari lattices and standard m-shifted Young tableaux. Using Thrall’s formula, I thus derive the formula for the number of maximum length chains in T(n).

For each i greater or equal to -1 and for all n greater or equal to 1, I define C(i,n) to be the set of maximal chains of length n+i in T(n). I establish several properties of maximal chains (treated as tableaux) and identify a particularly special property: each maximal chain may or may not possess a plus-full-set. I show, surprisingly, that for all n greater or equal to 2i+4, each member of C(i,n) contains a plus-full-set. Utilizing this fact and a collection of maps, I obtain a recursion for the number of elements in C(i,n) and an explicit formula based on predetermined initial values. The formula is a polynomial in n of degree 3i+3. For example, the number of maximal chains of length n in T(n) is n choose 3.

I discuss current work and future plans involving certain equivalence classes of maximal chains in the Tamari lattices. If a maximal chain may be obtained from another by swapping a pair of consecutive edges with another pair in the Hasse diagram, the two maximal chains are said to differ by a square move. Two maximal chains are said to be in the same equivalence class if one may be obtained from the other by making a set of square moves.

Contributors

Agent

Created

Date Created
  • 2016

151633-Thumbnail Image.png

Integrated supply chain network design: location, transportation, routing and inventory decisions

Description

In this dissertation, an innovative framework for designing a multi-product integrated supply chain network is proposed. Multiple products are shipped from production facilities to retailers through a network of Distribution

In this dissertation, an innovative framework for designing a multi-product integrated supply chain network is proposed. Multiple products are shipped from production facilities to retailers through a network of Distribution Centers (DCs). Each retailer has an independent, random demand for multiple products. The particular problem considered in this study also involves mixed-product transshipments between DCs with multiple truck size selection and routing delivery to retailers. Optimally solving such an integrated problem is in general not easy due to its combinatorial nature, especially when transshipments and routing are involved. In order to find out a good solution effectively, a two-phase solution methodology is derived: Phase I solves an integer programming model which includes all the constraints in the original model except that the routings are simplified to direct shipments by using estimated routing cost parameters. Then Phase II model solves the lower level inventory routing problem for each opened DC and its assigned retailers. The accuracy of the estimated routing cost and the effectiveness of the two-phase solution methodology are evaluated, the computational performance is found to be promising. The problem is able to be heuristically solved within a reasonable time frame for a broad range of problem sizes (one hour for the instance of 200 retailers). In addition, a model is generated for a similar network design problem considering direct shipment and consolidation within the same product set opportunities. A genetic algorithm and a specific problem heuristic are designed, tested and compared on several realistic scenarios.

Contributors

Agent

Created

Date Created
  • 2013

156583-Thumbnail Image.png

Some Turán-type problems in extremal graph theory

Description

Since the seminal work of Tur ́an, the forbidden subgraph problem has been among the central questions in extremal graph theory. Let ex(n;F) be the smallest number m such that

Since the seminal work of Tur ́an, the forbidden subgraph problem has been among the central questions in extremal graph theory. Let ex(n;F) be the smallest number m such that any graph on n vertices with m edges contains F as a subgraph. Then the forbidden subgraph problem asks to find ex(n; F ) for various graphs F . The question can be further generalized by asking for the extreme values of other graph parameters like minimum degree, maximum degree, or connectivity. We call this type of question a Tura ́n-type problem. In this thesis, we will study Tura ́n-type problems and their variants for graphs and hypergraphs.

Chapter 2 contains a Tura ́n-type problem for cycles in dense graphs. The main result in this chapter gives a tight bound for the minimum degree of a graph which guarantees existence of disjoint cycles in the case of dense graphs. This, in particular, answers in the affirmative a question of Faudree, Gould, Jacobson and Magnant in the case of dense graphs.

In Chapter 3, similar problems for trees are investigated. Recently, Faudree, Gould, Jacobson and West studied the minimum degree conditions for the existence of certain spanning caterpillars. They proved certain bounds that guarantee existence of spanning caterpillars. The main result in Chapter 3 significantly improves their result and answers one of their questions by proving a tight minimum degree bound for the existence of such structures.

Chapter 4 includes another Tur ́an-type problem for loose paths of length three in a 3-graph. As a corollary, an upper bound for the multi-color Ramsey number for the loose path of length three in a 3-graph is achieved.

Contributors

Agent

Created

Date Created
  • 2018

149599-Thumbnail Image.png

Erdős-Ko-Rado theorems: new generalizations, stability analysis and Chvátal's Conjecture

Description

The primary focus of this dissertation lies in extremal combinatorics, in particular intersection theorems in finite set theory. A seminal result in the area is the theorem of Erdos, Ko

The primary focus of this dissertation lies in extremal combinatorics, in particular intersection theorems in finite set theory. A seminal result in the area is the theorem of Erdos, Ko and Rado which finds the upper bound on the size of an intersecting family of subsets of an n-element set and characterizes the structure of families which attain this upper bound. A major portion of this dissertation focuses on a recent generalization of the Erdos--Ko--Rado theorem which considers intersecting families of independent sets in graphs. An intersection theorem is proved for a large class of graphs, namely chordal graphs which satisfy an additional condition and similar problems are considered for trees, bipartite graphs and other special classes. A similar extension is also formulated for cross-intersecting families and results are proved for chordal graphs and cycles. A well-known generalization of the EKR theorem for k-wise intersecting families due to Frankl is also considered. A stability version of Frankl's theorem is proved, which provides additional structural information about k-wise intersecting families which have size close to the maximum upper bound. A graph-theoretic generalization of Frankl's theorem is also formulated and proved for perfect matching graphs. Finally, a long-standing conjecture of Chvatal regarding structure of maximum intersecting families in hereditary systems is considered. An intersection theorem is proved for hereditary families which have rank 3 using a powerful tool of Erdos and Rado which is called the Sunflower Lemma.

Contributors

Agent

Created

Date Created
  • 2011