Matching Items (6)
Filtering by

Clear all filters

128716-Thumbnail Image.png
Description

Cyanovirin-N (CV-N) is an antiviral lectin with potent activity against enveloped viruses, including HIV. The mechanism of action involves high affinity binding to mannose-rich glycans that decorate the surface of enveloped viruses. In the case of HIV, antiviral activity of CV-N is postulated to require multivalent interactions with envelope protein

Cyanovirin-N (CV-N) is an antiviral lectin with potent activity against enveloped viruses, including HIV. The mechanism of action involves high affinity binding to mannose-rich glycans that decorate the surface of enveloped viruses. In the case of HIV, antiviral activity of CV-N is postulated to require multivalent interactions with envelope protein gp120, achieved through a pseudo-repeat of sequence that adopts two near-identical glycan-binding sites, and possibly involves a 3D-domain-swapped dimeric form of CV-N. Here, we present a covalent dimer of CV-N that increases the number of active glycan-binding sites, and we characterize its ability to recognize four glycans in solution. A CV-N variant was designed in which two native repeats were separated by the “nested” covalent insertion of two additional repeats of CV-N, resulting in four possible glycan-binding sites. The resulting Nested CV-N folds into a wild-type-like structure as assessed by circular dichroism and NMR spectroscopy, and displays high thermal stability with a Tm of 59 °C, identical to WT. All four glycan-binding domains encompassed by the sequence are functional as demonstrated by isothermal titration calorimetry, which revealed two sets of binding events to dimannose with dissociation constants Kd of 25 μM and 900 μM, assigned to domains B and B’ and domains A and A’ respectively. Nested CV-N displays a slight increase in activity when compared to WT CV-N in both an anti-HIV cellular assay and a fusion assay. This construct conserves the original binding specifityies of domain A and B, thus indicating correct fold of the two CV-N repeats. Thus, rational design can be used to increase multivalency in antiviral lectins in a controlled manner.

Created2016-06-06
128756-Thumbnail Image.png
Description

Improved antigenicity against HIV-1 envelope (Env) protein is needed to elicit vaccine-induced protective immunity in humans. Here we describe the first tests in non-human primates (NHPs) of Env gp140 protein fused to a humanized anti-LOX-1 recombinant antibody for delivering Env directly to LOX-1-bearing antigen presenting cells, especially dendritic cells (DC).

Improved antigenicity against HIV-1 envelope (Env) protein is needed to elicit vaccine-induced protective immunity in humans. Here we describe the first tests in non-human primates (NHPs) of Env gp140 protein fused to a humanized anti-LOX-1 recombinant antibody for delivering Env directly to LOX-1-bearing antigen presenting cells, especially dendritic cells (DC). LOX-1, or 1ectin-like oxidized low-density lipoprotein (LDL) receptor-1, is expressed on various antigen presenting cells and endothelial cells, and is involved in promoting humoral immune responses. The anti-LOX-1 Env gp140 fusion protein was tested for priming immune responses and boosting responses in animals primed with replication competent NYVAC-KC Env gp140 vaccinia virus. Anti-LOX-1 Env gp140 vaccination elicited robust cellular and humoral responses when used for either priming or boosting immunity. Co-administration with Poly ICLC, a TLR3 agonist, was superior to GLA, a TLR4 agonist. Both CD4+ and CD8+ Env-specific T cell responses were elicited by anti-LOX-1 Env gp140, but in particular the CD4+ T cells were multifunctional and directed to multiple epitopes. Serum IgG and IgA antibody responses induced by anti-LOX-1 Env gp140 against various gp140 domains were cross-reactive across HIV-1 clades; however, the sera neutralized only HIV-1 bearing sequences most similar to the clade C 96ZM651 Env gp140 carried by the anti-LOX-1 vehicle. These data, as well as the safety of this protein vaccine, justify further exploration of this DC-targeting vaccine approach for protective immunity against HIV-1.

ContributorsZurawski, Gerard (Author) / Zurawski, Sandra (Author) / Flamar, Anne-Laure (Author) / Richert, Laura (Author) / Wagner, Ralf (Author) / Tomaras, Georgia D. (Author) / Montefiori, David C. (Author) / Roederer, Mario (Author) / Ferrari, Guido (Author) / Lacabaratz, Christine (Author) / Bonnabau, Henri (Author) / Klucar, Peter (Author) / Wang, Zhiqing (Author) / Foulds, Kathryn E. (Author) / Kao, Shing-Fen (Author) / Yates, Nicole L. (Author) / LaBranche, Celia (Author) / Jacobs, Bertram (Author) / Kibler, Karen (Author) / Asbach, Benedikt (Author) / Kliche, Alexander (Author) / Salazar, Andres (Author) / Reed, Steve (Author) / Self, Steve (Author) / Gottardo, Raphael (Author) / Galmin, Lindsey (Author) / Weiss, Deborah (Author) / Cristillo, Anthony (Author) / Thiebaut, Rodolphe (Author) / Pantaleo, Giuseppe (Author) / Levy, Yves (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2016-04-14
128847-Thumbnail Image.png
Description

While as yet there is no vaccine against HIV/AIDS, the results of the phase III Thai trial (RV144) have been encouraging and suggest that further improvements of the prime/boost vaccine combination of a poxvirus and protein are needed. With this aim, in this investigation we have generated derivatives of the

While as yet there is no vaccine against HIV/AIDS, the results of the phase III Thai trial (RV144) have been encouraging and suggest that further improvements of the prime/boost vaccine combination of a poxvirus and protein are needed. With this aim, in this investigation we have generated derivatives of the candidate vaccinia virus vaccine vector NYVAC with potentially improved functions. This has been achieved by the re-incorporation into the virus genome of two host range genes, K1L and C7L, in conjunction with the removal of the immunomodulatory viral molecule B19, an antagonist of type I interferon action. These novel virus vectors, referred to as NYVAC-C-KC and NYVAC-C-KC-ΔB19R, have acquired relevant biological characteristics, giving higher levels of antigen expression in infected cells, replication-competency in human keratinocytes and dermal fibroblasts, activation of selective host cell signal transduction pathways, and limited virus spread in tissues. Importantly, these replication-competent viruses have been demonstrated to maintain a highly attenuated phenotype.

ContributorsKibler, Karen (Author) / Gomez, Carmen E. (Author) / Perdiguero, Beatriz (Author) / Wong, Shukmei (Author) / Huynh, Trung (Author) / Holechek, Susan (Author) / Arndt, William (Author) / Jimenez, Victoria (Author) / Gonzalez-Sanz, Ruben (Author) / Denzler, Karen (Author) / Haddad, Elias K. (Author) / Wagner, Ralf (Author) / Sekaly, Rafick P. (Author) / Tartaglia, James (Author) / Pantaleo, Giuseppe (Author) / Jacobs, Bertram (Author) / Esteban, Mariano (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2011-11-09
128848-Thumbnail Image.png
Description

Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the

Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs), RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines.

ContributorsQuakkelaar, Esther D. (Author) / Redeker, Anke (Author) / Haddad, Elias K. (Author) / Harari, Alexandre (Author) / McCaughey, Stella Mayo (Author) / Duhen, Thomas (Author) / Filali-Mouhim, Abdelali (Author) / Goulet, Jean-Philippe (Author) / Loof, Nikki M. (Author) / Ossendorp, Ferry (Author) / Perdiguero, Beatriz (Author) / Heinen, Paul (Author) / Gomez, Carmen E. (Author) / Kibler, Karen (Author) / Koelle, David M. (Author) / Sekaly, Rafick P. (Author) / Sallusto, Federica (Author) / Lanzavecchia, Antonio (Author) / Pantaleo, Giuseppe (Author) / Esteban, Mariano (Author) / Tartaglia, Jim (Author) / Jacobs, Bertram L. (Author) / Melief, Cornelis J. M. (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2011-02-15
128900-Thumbnail Image.png
Description

Background: Hepatitis C virus (HCV) coinfection was reported to negatively affect HIV disease and HIV infection has a deleterious effect on HCV-related liver disease. However, despite common occurrence of HCV/HIV coinfection little is known about the mechanisms of interactions between the two viruses.

Methods: We studied CD4+ and CD8+ T cell and CD19+

Background: Hepatitis C virus (HCV) coinfection was reported to negatively affect HIV disease and HIV infection has a deleterious effect on HCV-related liver disease. However, despite common occurrence of HCV/HIV coinfection little is known about the mechanisms of interactions between the two viruses.

Methods: We studied CD4+ and CD8+ T cell and CD19+ B cell apoptosis in 104 HIV-positive patients (56 were also HCV-positive) and in 22 HCV/HIV-coinfected patients treated for chronic hepatitis C with pegylated interferon and ribavirin. We also analyzed HCV/HIV coinfection in a Daudi B-cell line expressing CD4 and susceptible to both HCV and HIV infection. Apoptosis was measured by AnnexinV staining.

Results: HCV/HIV coinfected patients had lower CD4+ and CD8+ T cell apoptosis and higher CD19+ B cell apoptosis than those with HIV monoinfection. Furthermore, anti-HCV treatment of HCV/HIV coinfected patients was followed by an increase of CD4+ and CD8+ T cell apoptosis and a decrease of CD19+ B cell apoptosis. In the Daudi CD4+ cell line, presence of HCV infection facilitated HIV replication, however, decreased the rate of HIV-related cell death.

Conclusion: In HCV/HIV coinfected patients T-cells were found to be destroyed at a slower rate than in HIV monoinfected patients. These results suggest that HCV is a molecular-level determinant in HIV disease.

ContributorsLaskus, Tomasz (Author) / Kibler, Karen (Author) / Chmielewski, Marcin (Author) / Wilkinson, Jeffrey (Author) / Adair, Debra (Author) / Horban, Andrzej (Author) / Stanczak, Grzegorz (Author) / Radkowski, Marek (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2013-10-01
129461-Thumbnail Image.png
Description

Pathogen reduction is a viable approach to ensure the continued safety of the blood supply against emerging pathogens. However, the currently licensed pathogen reduction techniques are ineffective against non-enveloped viruses such as hepatitis A virus, and they introduce chemicals with concerns of side effects which prevent their widespread use. In

Pathogen reduction is a viable approach to ensure the continued safety of the blood supply against emerging pathogens. However, the currently licensed pathogen reduction techniques are ineffective against non-enveloped viruses such as hepatitis A virus, and they introduce chemicals with concerns of side effects which prevent their widespread use. In this report, we demonstrate the inactivation of both enveloped and non-enveloped viruses in human plasma using a novel chemical-free method, a visible ultrashort pulsed laser. We found that laser treatment resulted in 2-log, 1-log, and 3-log reductions in human immunodeficiency virus, hepatitis A virus, and murine cytomegalovirus in human plasma, respectively. Laser-treated plasma showed ≥70% retention for most coagulation factors tested. Furthermore, laser treatment did not alter the structure of a model coagulation factor, fibrinogen. Ultrashort pulsed lasers are a promising new method for chemical-free, broad-spectrum pathogen reduction in human plasma.

ContributorsTsen, Shaw-Wei D. (Author) / Kingsley, David H. (Author) / Kibler, Karen (Author) / Jacobs, Bertram (Author) / Sizemore, Sara (Author) / Vaiana, Sara (Author) / Anderson, Jeanne (Author) / Tsen, Kong-Thon (Author) / Achilefu, Samuel (Author) / Biodesign Institute (Contributor)
Created2014-11-05