Matching Items (1,520)
Filtering by

Clear all filters

Description
Copper demand is surging in the U.S. and around the world as countries embrace new forms of energy to combat climate change. But copper mining – while a key strategy to address supply shortages – can serve as a vehicle for injustice by imposing socio-ecological burdens for nearby communities. Due

Copper demand is surging in the U.S. and around the world as countries embrace new forms of energy to combat climate change. But copper mining – while a key strategy to address supply shortages – can serve as a vehicle for injustice by imposing socio-ecological burdens for nearby communities. Due to the growing demand for copper with resulting justice issues, more research is needed to evaluate governance for the mining sector using an environmental justice lens. The National Environmental Policy Act (NEPA) is a key environmental regulation that governs mining in the U.S. Therefore, I used a qualitative case study approach to examine how NEPA requirements shape engagement in public comment opportunities. I selected the Resolution Copper Mine as a case study because of its potential to support the energy transition but pose a significant dilemma for justice: the mine is anticipated to generate 25 percent of the U.S. copper demand each year but disturb lands that hold spiritual significance for Native American Tribes. I used the Institutional Analysis and Development (IAD) framework to analyze institutional dynamics and evaluate the NEPA process for public participation using a procedural justice lens. Drawing on interview data and document analysis, the results show that process rules such as a land exchange bill and the lengths of comment opportunities were among the key barriers for participation. Socioeconomic conditions of communities including access to social resources (i.e. access to internet and technical assistance) and institutional trust posed further barriers for participation. Hence, this study suggests that federal decision-makers should aim to better integrate procedural justice into the NEPA process.
ContributorsLewis, Sydney (Author) / Kellner, Elke (Thesis director) / Janssen, Marco (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2024-05
ContributorsLewis, Sydney (Author) / Kellner, Elke (Thesis director) / Janssen, Marco (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2024-05
ContributorsLewis, Sydney (Author) / Kellner, Elke (Thesis director) / Janssen, Marco (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2024-05
ContributorsLewis, Sydney (Author) / Kellner, Elke (Thesis director) / Janssen, Marco (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2024-05
ContributorsLewis, Sydney (Author) / Kellner, Elke (Thesis director) / Janssen, Marco (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2024-05
ContributorsLewis, Sydney (Author) / Kellner, Elke (Thesis director) / Janssen, Marco (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2024-05
192572-Thumbnail Image.png
Description
The morphological characteristics of organisms are intricately linked to their ecological features. As a result, species with similar ecological niches may exhibit shared morphological traits due to convergent evolution. Some genomic features could be relevant to influencing the occurrence of convergence evolution. Anoles, with over 400 species, are an excellent

The morphological characteristics of organisms are intricately linked to their ecological features. As a result, species with similar ecological niches may exhibit shared morphological traits due to convergent evolution. Some genomic features could be relevant to influencing the occurrence of convergence evolution. Anoles, with over 400 species, are an excellent model for studying this process. Within Anolis, groups of species that have evolved similar morphological traits and ecological adaptations in response to specific environmental niches are described as ecomorphs. One ecomorph, the crown-giant anoles, has independently evolved large body sizes and adapted to arboreal habitats, predominantly occupying the upper canopy layer of forests. The objective of this study was to explore the convergent evolution of morphological traits in crown giant anoles, by comparing the osteological traits of two crown giants, Anolis frenatus, and A. equestris, to four non-crown giant species from different ecomorphs, A. auratus, A. carolinensis, A. biporcatus, and A. sagrei. The analysis indicated an absence of convergence in most morphological traits except for body size (SVL). Additionally, this study explored the potential role of transposable elements (TEs) as a genomic feature shaping the morphological diversity of crown giant anoles. The genes located within TE-rich regions on the genome were identified across selected Anolis species. An enrichment of genes associated with regulation and developmental processes was detected in regions with high TE abundance for all analyzed species, but not exclusive to crown giants. The results suggest that crown giants seem to only converge in their substantial body size and that the variability in other morphological characteristics could be attributed to some other ecological features or the phylogenetic relationships of each species. Moreover, TEs may play a role in facilitating morphological evolution and adaptability in all Anolis species, as they could influence gene expression and regulatory pathways. This highlights the need for further investigation into the genomic mechanisms determining convergent evolution.
ContributorsJohnson, Jaime (Author) / Kusumi, Kenro (Thesis director) / Araya-Donoso, Raúl (Committee member) / Dolby, Greer (Committee member) / Fisher, Rebecca (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2024-05
Description
This paper analyzes the factors that contribute to suicide using current literature, statistics, and research towards what affects suicidal tendencies. It was found that there are 5 main factors that contribute towards these tendencies: economics, social factors, geography, politics, and biology. Additionally, some of these factors included subcategories of factors

This paper analyzes the factors that contribute to suicide using current literature, statistics, and research towards what affects suicidal tendencies. It was found that there are 5 main factors that contribute towards these tendencies: economics, social factors, geography, politics, and biology. Additionally, some of these factors included subcategories of factors and/or were connected to the other factors mentioned. It was concluded that there is not just one factor that may contribute to someone taking their own life, however a combination of different factors that may influence suicidal tendencies.
ContributorsGeorge, Rhys (Author) / O'Flaherty, Katherine (Thesis director) / Hurtado, Ana (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2024-05
161050-Thumbnail Image.png
Description

Cooperative cellular phenotypes are universal across multicellular life. Division of labor, regulated proliferation, and controlled cell death are essential in the maintenance of a multicellular body. Breakdowns in these cooperative phenotypes are foundational in understanding the initiation and progression of neoplastic diseases, such as cancer. Cooperative cellular phenotypes are straightforward

Cooperative cellular phenotypes are universal across multicellular life. Division of labor, regulated proliferation, and controlled cell death are essential in the maintenance of a multicellular body. Breakdowns in these cooperative phenotypes are foundational in understanding the initiation and progression of neoplastic diseases, such as cancer. Cooperative cellular phenotypes are straightforward to characterize in extant species but the selective pressures that drove their emergence at the transition(s) to multicellularity have yet to be fully characterized. Here we seek to understand how a dynamic environment shaped the emergence of two mechanisms of regulated cell survival: apoptosis and senescence. We developed an agent-based model to test the time to extinction or stability in each of these phenotypes across three levels of stochastic environments.

ContributorsDanesh, Dafna (Author) / Maley, Carlo (Thesis director) / Aktipis, Athena (Committee member) / Compton, Zachary (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2021-12
161054-Thumbnail Image.png
ContributorsKhaled, Dalia (Author) / Grgich, Traci (Thesis director) / McCoy, Maureen (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2021-12