Matching Items (24)
162201-Thumbnail Image.png
Description

In this quantitative research paper, we explored the correlation between the six dimensions of motivation as part of the Self-Determination Theory spectrum and physical activity. In addition, our aim was to also see if Transcranial Direct Current Stimulation (tDCS) paired with exercise as an intervention would affect motivation to exercise

In this quantitative research paper, we explored the correlation between the six dimensions of motivation as part of the Self-Determination Theory spectrum and physical activity. In addition, our aim was to also see if Transcranial Direct Current Stimulation (tDCS) paired with exercise as an intervention would affect motivation to exercise over time.

ContributorsPankoff, Mia (Author) / Quezada, Gabrielle (Co-author) / Katsanos, Christos (Thesis director) / Shaffer, Zachary (Committee member) / Ruiz Tejada, Anaissa (Committee member) / Barrett, The Honors College (Contributor) / Edson College of Nursing and Health Innovation (Contributor)
Created2021-12
162202-Thumbnail Image.png
Description

In this quantitative research paper, we explored the correlation between the six dimensions of motivation as part of the Self-Determination Theory spectrum and physical activity. In addition, our aim was to also see if Transcranial Direct Current Stimulation (tDCS) paired with exercise as an intervention would affect motivation to exercise

In this quantitative research paper, we explored the correlation between the six dimensions of motivation as part of the Self-Determination Theory spectrum and physical activity. In addition, our aim was to also see if Transcranial Direct Current Stimulation (tDCS) paired with exercise as an intervention would affect motivation to exercise over time.

ContributorsQuezada, Gabrielle (Author) / Pankoff, Mia (Co-author) / Katsanos, Christos (Thesis director) / Shaffer, Zachary (Committee member) / Ruiz Tejada, Anaissa (Committee member) / Barrett, The Honors College (Contributor) / Edson College of Nursing and Health Innovation (Contributor) / College of Integrative Sciences and Arts (Contributor)
Created2021-12
168687-Thumbnail Image.png
Description
Free coenzyme A (CoASH) carries acyl groups for the tricarboxylic acid (TCA) cycle and fatty acid metabolism, and donates acyl groups for protein posttranslational modifications. Cellular de novo CoASH synthesis starts with a pantothenate kinase (PANK1-3) phosphorylating pantothenate (vitamin B5). Mutations in PANK2 cause a subtype of neurodegeneration with brain

Free coenzyme A (CoASH) carries acyl groups for the tricarboxylic acid (TCA) cycle and fatty acid metabolism, and donates acyl groups for protein posttranslational modifications. Cellular de novo CoASH synthesis starts with a pantothenate kinase (PANK1-3) phosphorylating pantothenate (vitamin B5). Mutations in PANK2 cause a subtype of neurodegeneration with brain iron accumulation (NBIA). The PANKs have differential subcellular distribution and regulatory properties. However, the purpose of each PANK has remained obscure, with knockout mouse models presenting with mild phenotypes unless challenged with a high-fat diet. Based on PANK2’s known activation by palmitoylcarnitine, the PANK2-deficient cells were challenged with palmitic acid (PAL) added to glucose-containing media. The high nutrient mixture generated a surprising “starvation” profile of reduced proliferation, low ATP, AMPK activation, and autophagy upregulation in PANK2-deficient PAL-challenged cells. Further experiments showed that fatty acids accumulated and that PANK2-deficient cells had reduced respiration when provided with palmitoylcarnitine as a substrate, seemingly due to an impaired ability to oxidize fatty acids during PAL-induced Randle Cycle activation. Intriguingly, whole-cell CoASH levels remained stable despite the PAL-induced starvation phenotype, and increasing CoASH via PANK1β overexpression did not rescue the phenotype, demonstrating a unique role for PANK2 in fatty acid metabolism. Even though a direct CoASH deficiency was not detected, there were changes in short chain CoA-derivatives, including acetyl-CoA, succinyl-CoA, and butyryl-CoA, as well as evidence of impaired TCA cycle function. These impairments in both the TCA cycle and fatty acid oxidation implicate a role for PANK2 in regulating mitochondria CoA dynamics.
ContributorsNordlie, Sandra Maria (Author) / Kruer, Michael C (Thesis advisor) / Neisewander, Janet (Thesis advisor) / Padilla Lopez, Sergio (Committee member) / Katsanos, Christos (Committee member) / Arizona State University (Publisher)
Created2022
187730-Thumbnail Image.png
Description
Elevated triglycerides (TG) are a hallmark of insulin resistance, which is generally caused by lower lipoprotein lipase (LPL) activity in the vasculature. LPL hydrolyzes TGs into free fatty acids in plasma for use and/or storage in tissues (i.e., adipose tissue, skeletal muscle). Plasma apolipoproteins (Apos) C3 and C2 interact with

Elevated triglycerides (TG) are a hallmark of insulin resistance, which is generally caused by lower lipoprotein lipase (LPL) activity in the vasculature. LPL hydrolyzes TGs into free fatty acids in plasma for use and/or storage in tissues (i.e., adipose tissue, skeletal muscle). Plasma apolipoproteins (Apos) C3 and C2 interact with LPL to modulate its function, and by inhibiting or activating LPL, respectively. Therefore, these proteins play key role in plasma lipid metabolism, but their role in regulating LPL activity in human insulin resistant (IR) (i.e., pre-diabetic) state is not known. Thus, the purpose of this research was to evaluate the concentrations of ApoC3 and ApoC2 in plasma along with the endothelial-bound LPL availability and activity in IR humans and in healthy, insulin sensitive (IS)/control humans. Insulin resistance was evaluated from plasma insulin and glucose responses to an oral glucose tolerance test, and by calculating the Matsuda index. Subjects were placed in the following groups: IR subjects, Matsuda index <4.0 (N=7; 4 males, 3 females); IS, Matsuda index >7.0 (N=11, 9 males, 2 females). IR and IS subjects received an intravenous infusion of insulin (1 mU/kg/min and 0.5 mU/kg/min, respectively) for 30 minutes to stimulate LPL activity. Whole-body endothelial-bound LPL was released from the vasculature by intravenous infusion of heparin. Plasma samples were collected 10 minutes after heparin infusion and analyzed for LPL concentration and activity, and ApoC3 and ApoC2 concentrations. Although plasma LPL concentrations were not different between groups (IR = 457 ± 17 ng/ml, IS = 453 ± 27 ng/ml, P = 0.02), plasma LPL activity was higher in the IR subjects (IR = 665 ± 113 nmol/min/ml, IS = 365 ± 59 nmol/min/ml, P = 0.02). IR subjects had higher concentrations of plasma ApoC3 (IR = 3.6 ± 0.5 mg/dl, IS = 2.7 ± 0.2 mg/dl, P=0.03). However, ApoC2 concentration was not different between groups (IR = 0.15 ± 0.03 mg/dl, IS = 0.11 ± 0.01 mg/dl, P = 0.11). These findings suggest that circulating APOC3 and ApoC2 are not key determinants regulating LPL activity during hyperinsulinemia in the vasculature of insulin resistant humans.
ContributorsJohnsson, Kailin Alexis (Author) / Katsanos, Christos (Thesis advisor) / Herman, Richard (Committee member) / De Filippis, Elena (Eleanna) (Committee member) / Arizona State University (Publisher)
Created2023
Description

In light of recent school-policy movements that encourage recess be moved before lunch, the present study seeks to examine the relationship between food consumption and immediate, subsequent physical activity (PA) and, more specifically, if a risk would be posed to the amount of children's PA if food is not consumed

In light of recent school-policy movements that encourage recess be moved before lunch, the present study seeks to examine the relationship between food consumption and immediate, subsequent physical activity (PA) and, more specifically, if a risk would be posed to the amount of children's PA if food is not consumed directly before activity. A cross-section study was performed measuring (a) lunch composition (in terms of food groups defined by the USDA's food plate), (b) lunch consumption, and (c) moderate-to-vigorous physical activity (MVPA) during the following recess period, in consenting third through sixth grade students. The relationship between food consumption and percentage of recess time spent in MVPA was determined to be weak. However, the study identified low average provision and consumption rates across all food groups and evaluated this through the lease of current school lunch policy/formatting.

ContributorsWolfe, Ariana (Author) / Poulos, Allison (Thesis director) / Katsanos, Christos (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2023-05
161651-Thumbnail Image.png
Description
Obesity is one of the most challenging health conditions of our time, characterized by complex interactions between behavioral, environmental, and genetic factors. These interactions lead to a distinctive obese phenotype. Twenty years ago, the gut microbiota (GM) was postulated as a significant factor contributing to the obese phenotype and associated

Obesity is one of the most challenging health conditions of our time, characterized by complex interactions between behavioral, environmental, and genetic factors. These interactions lead to a distinctive obese phenotype. Twenty years ago, the gut microbiota (GM) was postulated as a significant factor contributing to the obese phenotype and associated metabolic disturbances. Exercise had shown to improve and revert the metabolic abnormalities in obese individuals. Also, genistein has a suggested potential anti-obesogenic effect. Studying the dynamic interaction of the GM with relevant organs in metabolic homeostasis is crucial for the design of new long-term therapies to treat obesity. The purpose of this experimental study is to examine exercise (Exe), genistein (Gen), and their combined intervention (Exe + Gen) effects on GM composition and musculoskeletal mitochondrial oxidative function in diet-induced obese mice. Also, this study aims to explore the association between gut microbial diversity and mitochondrial oxidative capacity. 132 adult male (n=63) and female (n= 69) C57BL/6 mice were randomized to one of five interventions for twelve weeks: control (n= 27), high fat diet (HFD; n=26), HFD + Exe (n=28), HFD + Gen (n=27), or HFD + Exe + Gen (n=24). All HFD drinking water was supplemented with 42g sugar/L. Fecal pellets were collected, DNA extracted, and measured the microbial composition by sequencing the V4 of the 16S rRNA gene with Illumina. The mitochondrial oxidative capacity was assessed by measuring the enzymatic kinetic activity of the citrate synthase (CS) of forty-nine mice. This study found that Exe groups had a significantly higher bacterial richness compared to HFD + Gen or HFD group. Exe + Gen showed the synergistic effect to drive the GM towards the control group´s GM composition as we found Ruminococcus significantly more abundant in the HFD + Exe + Gen than the rest of the HFD groups. The study did not find preventive capacity in either of the interventions on the CS activity. Therefore, further research is needed to confirm the synergistic effect of Exe, Exe, and Gen on the gut bacterial richness and the capacity to prevent HFD-induced deleterious effect on GM and mitochondrial oxidative capacity.
ContributorsOrtega Santos, Carmen Patricia (Author) / Whisner, Corrie M (Thesis advisor) / Dickinson, Jared M (Committee member) / Katsanos, Christos (Committee member) / Gu, Haiwei (Committee member) / Liu, Li (Committee member) / Al-Nakkash, Layla (Committee member) / Arizona State University (Publisher)
Created2021
131985-Thumbnail Image.png
Description

The prevalence of obesity continues to increase in the United States, along with its risk for other associated cardiovascular and metabolic diseases. Several therapeutic methods are aimed at targeting and reducing obesity, now defined as a state of chronic, low-grade inflammation (in addition to BMI > 30 kg/m2). In an

The prevalence of obesity continues to increase in the United States, along with its risk for other associated cardiovascular and metabolic diseases. Several therapeutic methods are aimed at targeting and reducing obesity, now defined as a state of chronic, low-grade inflammation (in addition to BMI > 30 kg/m2). In an attempt to expand on these therapeutic methods, research on the concept of browning in white adipose tissue (WAT) and brown adipose tissue (BAT) is being conducted. Brown adipose tissue (BAT), and a newly discovered type of adipocyte, beige adipocytes, are heavily involved in thermogenesis with the use of uncoupling protein-1 (UCP-1). This paper focuses on the analysis of common browning genes, ATP-related genes, and metabolic genes in varying biological groups in mice (Chow/High-Fat Diet and Inguinal FAT and Perigonadal Fat) and in humans (Lean/Obese and Subcutaneous WAT (SC) and Omental WAT (OM)) using methods such as RT-PCR and immunohistochemistry. The data obtained shows an increase in browning in the leaner group, specifically in the subcutaneous fat. Further, browning is significantly reduced in the obese groups of subjects and mice tested, in addition to omental/perigonadal versus subcutaneous/inguinal fat depots. Interestingly, two key ATP genes, UCP-1 and COX4I1 are vastly elevated in the OM WAT, indicating that browning may not be as important in the OM, but rather may have a potential role in SC. This is contrary to prior research findings that attempt to exclude mice surrogates in future experimentation of the browning phenomenon. Further experimentation is needed to expand on the findings of this paper.

ContributorsGhannam, Hamza Ibrahim (Author) / De Filippis, Eleanna (Thesis director) / Katsanos, Christos (Committee member) / Hernandez, James (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
132406-Thumbnail Image.png
Description
Type 2 diabetes mellitus (T2DM) is a life-long disease that affects over 27 million individuals in the United States alone. There are many different risk factors and pre-indicators of T2DM. One of them is insulin resistance. Insulin resistance occurs when the body is unable to appropriately respond to insulin. This

Type 2 diabetes mellitus (T2DM) is a life-long disease that affects over 27 million individuals in the United States alone. There are many different risk factors and pre-indicators of T2DM. One of them is insulin resistance. Insulin resistance occurs when the body is unable to appropriately respond to insulin. This in turn leads to increased levels of glucose and insulin in the bloodstream. Unlike T2DM, insulin resistance is a reversible diagnosis. The purpose of this project was to identify the most influential genetic and dietary factors of insulin resistance and to see if individuals have some extent of control to possibly avoid the diagnosis of insulin resistance and possibly T2DM entirely.
A total of 26 human subjects were used in this study. Each subject was classified as either lean or obese, according to their BMI measurement. First, the subjects underwent an oral glucose tolerance test. Blood samples were taken to measure glucose levels in the blood. After the test subject characteristics for each subject was obtained. These included age, BMI, body fat percentage, fat free mass (FFM), height, total mass, waist circumference, hip circumference, and waist to hip ratio. After the subject characteristics and blood glucose were measured the blood samples taken previously were then centrifuged, and the blood plasma was extracted. The blood plasma was then used to undergo an Insulin ELISA test. After extensive analysis, the Matsuda Index of each subject was obtained. Subjects with a Matsuda value of 6.0 or under were considered insulin resistant while subjects with a Matsuda value higher than 6.0 were considered insulin sensitive. Subjects were also required to submit a dietary record over the course of three days. The food intake was then put into a food processing software which gave a daily average of the macro and micro nutrients for each subject. Both the subject and dietary values were put into a multiple regression with a significance factor of p < 0.5 to see which factors contributed most to the Matsuda value.
It was found that BMI, height, total mass, insulin and fat free mass, all of which were subject characteristics, were considered to be significant. Some of these factors an individual has no control over, such as height and insulin. However other factors such as BMI, total mass and fat free mass can be affected by both a healthy diet and frequent exercise. This study validated that diet and physical activity can greatly influence an individual’s susceptibility to insulin resistance and ultimately T2DM.
ContributorsBrinkerhoff, Catalina Marie (Author) / Katsanos, Christos (Thesis director) / Shaffer, Zachary (Committee member) / College of Health Solutions (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
165145-Thumbnail Image.png
Description

According to the CDC, obesity has increased from 30.5% to 42.4% over the past 18 years. Western diets (WDs) consist of large portions in high fats, high carbohydrates, excess sugar and high-glycemic foods that can cause metabolic complications and mitochondrial dysfunction. Diet-induced obesity can lead to changes in muscle metabolism

According to the CDC, obesity has increased from 30.5% to 42.4% over the past 18 years. Western diets (WDs) consist of large portions in high fats, high carbohydrates, excess sugar and high-glycemic foods that can cause metabolic complications and mitochondrial dysfunction. Diet-induced obesity can lead to changes in muscle metabolism and muscle fiber phenotypes, which in turn lead to metabolic complications. Muscle fiber phenotype is determined protein isoform-content of myosin heavy chain (MHC). Regular exercise alters mitochondrial content and fat oxidation and shifts MHC proportions under healthy circumstances. However, diet and exercise-driven fiber type shifts in diet-induced obesity are less understood. We designed our experiment to better understand the impact of diet and/ or exercise on fiber type content of gastrocnemius muscle in diet-induced obese mice. Exercise and genistein may be used as a treatment strategy to restore the MHC proportions in obese subjects to that of the lean subjects. We hypothesized that genistein and exercise would have the greatest MHC I change in muscle fiber phenotype of mouse gastrocnemius muscles. Further, we also hypothesized that a standard diet would reverse the expected increase in fast fiber phenotype (MHC IIb). Lastly, we also hypothesized that exercise would also reduce the abundance of MHC IIb. Gastrocnemius muscles were collected from mice, homogenized, run through gel electrophoresis and stained to give muscle fiber proportions. Paired sample t-tests were conducted for differences between the MHC isoforms compared to the lean (LN) and high-fat diet (HFD) control groups. The results showed that genistein and exercise significantly increased the abundance of MHC I muscle fibers (19%, p<0.05). Additionally, diet and exercise restored the muscle fiber phenotype to that of lean control. As expected, HFD obese mice exhibited elevated fast twitch fibers compared to only 3% slow twitch fibers. These findings show the potential for exercise and supplementation of genistein as a strategy to combat diet induced obesity. Future research should aim to understand the mechanisms that genistein acts on to make these changes, and aim to replicate these data in humans with obesity.

ContributorsSodhi, Harkaran (Author) / Katsanos, Christos (Thesis director) / Wang, Shu (Committee member) / Serrano, Nathan (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05
164533-Thumbnail Image.png
Description
Innate immunity is regulated at both the transcriptional and epigenetic level. However, the complex epigenetic regulation of inflammatory responses in innate immunity remains to be fully characterized. The objective was to characterize the function of a NAD+-dependent lysine deacetylase SIRT7 in regulating polarization and inflammatory responses in bone marrow derived

Innate immunity is regulated at both the transcriptional and epigenetic level. However, the complex epigenetic regulation of inflammatory responses in innate immunity remains to be fully characterized. The objective was to characterize the function of a NAD+-dependent lysine deacetylase SIRT7 in regulating polarization and inflammatory responses in bone marrow derived macrophages. In primary bone marrow derived macrophages, LPS induced significant pro-inflammatory responses. LysM-Cre induced SIRT7 knockout (KO) male macrophages exhibited enhanced inflammatory responses compared to WT macrophages. Interestingly, we did not observe a similar trend in female cells. In fact, loss of SIRT7 in female macrophages induced weaker proinflammatory responses when challenged with LPS. As an epigenetic co-factor, SIRT7 is known to interact with multiple inflammation related nuclear hormone receptors, such as glucocorticoid receptor (GR), and vitamin D receptor (VDR). Therefore, we examined whether the glucocorticoid or vitamin D induced anti-inflammatory responses are affected in SIRT7 KO macrophages. Preliminary results suggest that both glucocorticoid and vitamin D are still able to inhibit LPS-induced inflammatory responses in SIRT7 KO cells. Future studies using RNA-seq and epigenetic assays will be needed to determine the sex-specific function of SIRT7 in macrophage activation. 
ContributorsMikkilineni, Sneha (Author) / Katsanos, Christos (Thesis director) / Wei, Zong (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05