Matching Items (7)
Description

The objective of this experiment was to investigate the correlation between the starting pitch angle of a Dragon Boat paddle and the ensuing total stress and force on the paddle during the first stroke. During the first stroke (i.e., starting at rest) the stress on the paddle can be equated

The objective of this experiment was to investigate the correlation between the starting pitch angle of a Dragon Boat paddle and the ensuing total stress and force on the paddle during the first stroke. During the first stroke (i.e., starting at rest) the stress on the paddle can be equated with the force output. To do this, a paddle was modified with a strain gauge and other equipment, and tests were run varying the pitch angle. The results showed that while the most positive starting angle yielded the highest stress and force on the paddle, there was no discernible trend correlating the angle to the stress. Further experimentation must be run to determine which other factors influence the stress.

ContributorsHeitmann, Kevin Matthew (Author) / Takahashi, Timothy (Thesis director) / Kasbaoui, Mohamed (Committee member) / Materials Science and Engineering Program (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The following analysis was conducted at the Arizona State University open loop wind tunnel. Two 1/24-th scale NASCAR models were placed in a wind tunnel test section and were adjusted to study drafting that commonly occurs at superspeedway racetracks. The purpose of the experiment was to determine how drafting affects

The following analysis was conducted at the Arizona State University open loop wind tunnel. Two 1/24-th scale NASCAR models were placed in a wind tunnel test section and were adjusted to study drafting that commonly occurs at superspeedway racetracks. The purpose of the experiment was to determine how drafting affects a leading and trailing car through changes in distance. A wind tunnel model was developed consisting of two 2019 NASCAR Chevy Camaro race car models, two bar-style load cells, and a programmed Arduino UNO. Two trials were run at each drafting distance, 0, 0.5, 1, 1.5, and 2 car lengths apart. Each trial was run at a wind tunnel velocity of 78 mph (35 m/s) and force data was collected to represent the drag effects at each drafting location. Based on previously published experimentation, this analysis provided important data that related drafting effects in scale model race cars to full-scale vehicles. The experiment showed that scale model testing can be accurately completed when the wind tunnel Reynolds number is of the same magnitude as a full-scale NASCAR. However, the wind tunnel data collected was proven to be fully laminar flow and did not compare to the flow characteristics of typically turbulent flow seen in superspeedway races. Overall, the analytical drag analysis of drafting NASCAR models proved that wind tunnel testing is only accurate when many parameters are met and should only be used as a method of validation to full-scale testing.

ContributorsOlszak, Parker T (Author) / Takahashi, Timothy (Thesis director) / Kasbaoui, Mohamed (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
158238-Thumbnail Image.png
Description
Computability of spray flows is an important issue, from both fundamental and practical perspectives. Spray flows have important applications in fuel injection, agriculture, medical devices, and industrial processes such as spray cooling. For this reason, many efforts have been devoted to experimental, computational and some theoretical aspects of spray

Computability of spray flows is an important issue, from both fundamental and practical perspectives. Spray flows have important applications in fuel injection, agriculture, medical devices, and industrial processes such as spray cooling. For this reason, many efforts have been devoted to experimental, computational and some theoretical aspects of spray flows. In particular, primary atomization, the process of bulk liquid transitioning to small droplets, is a central and probably the most difficult aspect of spray flows. This thesis discusses developed methods, results, and needed improvements in the modeling of primary atomization using a predictive Sauter Mean Diameter (SMD) formula. Primary atomization for round injectors and simplex atomizers is modeled using a three-step procedure. For each spray geometry, a volume-of-fluid simulation is run to resolve the trajectory of the intact liquid core. Atomization criterion is applied to the volume-of-fluid velocity field to determine atomization sites. Local droplet size is predicted at the atomization sites using the quadratic formula for Sauter Mean Diameter. Droplets with the computed drop size are injected from the atomization sites and are tracked as point-particles. A User Defined Memory (UDM) code is employed to compute steady-state Sauter Mean Diameter statistics at locations corresponding to experimental interrogation locations. The resulting Sauter Mean Diameter, droplet trajectory, and droplet velocity are compared against experimental data to validate the computational protocol. This protocol can be implemented on coarse-grid, time-averaged simulations of spray flows, and produces convincing results when compared with experimental data for pressure-atomized sprays with and without swirl. This approach is general and can be adapted in any spray geometry for complete and efficient computations of spray flows.
ContributorsGreenlee, Benjamin (Author) / Lee, Taewoo (Thesis advisor) / Herrmann, Marcus (Committee member) / Kasbaoui, Mohamed (Committee member) / Arizona State University (Publisher)
Created2020
171461-Thumbnail Image.png
Description
This work aims to address the design optimization of bio-inspired locomotive devices in collective swimming by developing a computational methodology which combines surrogate-based optimization with high fidelity fluid-structure interactions (FSI) simulations of thunniform swimmers. Three main phases highlight the contribution and novelty of the current work. The first phase includes

This work aims to address the design optimization of bio-inspired locomotive devices in collective swimming by developing a computational methodology which combines surrogate-based optimization with high fidelity fluid-structure interactions (FSI) simulations of thunniform swimmers. Three main phases highlight the contribution and novelty of the current work. The first phase includes the development and bench-marking of a constrained surrogate-based optimization algorithm which is appropriate to the current design problem. Additionally, new FSI techniques, such as a volume-conservation scheme, has been developed to enhance the accuracy and speed of the simulations. The second phase involves an investigation of the optimized hydrodynamics of a solitary accelerating self-propelled thunniform swimmer during start-up. The third phase extends the analysis to include the optimized hydrodynamics of accelerating swimmers in phalanx schools. Future work includes extending the analysis to the optimized hydrodynamics of steady-state and accelerating swimmers in a diamond-shaped school. The results of the first phase indicate that the proposed optimization algorithm maintains a competitive performance when compared to other gradient-based and gradient-free methods, in dealing with expensive simulations-based black-box optimization problems with constraints. In addition, the proposed optimization algorithm is capable of insuring strictly feasible candidates during the optimization procedure, which is a desirable property in applied engineering problems where design variables must remain feasible for simulations or experiments not to fail. The results of the second phase indicate that the optimized kinematic gait of a solitary accelerating swimmer generates the reverse Karman vortex street associated with high propulsive efficiency. Moreover, the efficiency of sub-optimum modes, in solitary swimming, is found to increase with both the tail amplitude and the effective flapping length of the swimmer, and a new scaling law is proposed to capture these trends. Results of the third phase indicate that the optimal midline kinematics in accelerating phalanx schools resemble those of accelerating solitary swimmers. The optimal separation distance in a phalanx school is shown to be around 2L (where L is the swimmer's total length). Furthermore, separation distance is shown to have a stronger effect, ceteris paribus, on the propulsion efficiency of a school when compared to phase synchronization.
ContributorsAbouhussein, Ahmed (Author) / Peet, Yulia (Thesis advisor) / Adrian, Ronald (Committee member) / Kim, Jeonglae (Committee member) / Kasbaoui, Mohamed (Committee member) / Mittelmann, Hans (Committee member) / Arizona State University (Publisher)
Created2022
157987-Thumbnail Image.png
Description
The applications utilizing nanoparticles have grown in both industrial and academic areas because of the very large surface area to volume ratios of these particles. One of the best ways to process and control these nanoparticles is fluidization. In this work, a new microjet and vibration assisted (MVA) fluidized bed

The applications utilizing nanoparticles have grown in both industrial and academic areas because of the very large surface area to volume ratios of these particles. One of the best ways to process and control these nanoparticles is fluidization. In this work, a new microjet and vibration assisted (MVA) fluidized bed system was developed in order to fluidize nanoparticles. The system was tested and the parameters optimized using two commercially available TiO2 nanoparticles: P25 and P90. The fluidization quality was assessed by determining the non-dimensional bed height as well as the non-dimensional pressure drop. The non-dimensional bed height for the nanosized TiO2 in the MVA system optimized at about 5 and 7 for P25 and P90 TiO2, respectively, at a resonance frequency of 50 Hz. The non-dimensional pressure drop was also determined and showed that the MVA system exhibited a lower minimum fluidization velocity for both of the TiO2 types as compared to fluidization that employed only vibration assistance. Additional experiments were performed with the MVA to characterize the synergistic effects of vibrational intensity and gas velocity on the TiO2 P25 and P90 fluidized bed heights. Mathematical relationships were developed to correlate vibrational intensity, gas velocity, and fluidized bed height in the MVA. The non-dimensional bed height in the MVA system is comparable to previously published P25 TiO2 fluidization work that employed an alcohol in order to minimize the electrostatic attractions within the bed. However, the MVA system achieved similar results without the addition of a chemical, thereby expanding the potential chemical reaction engineering and environmental remediation opportunities for fluidized nanoparticle systems.

In order to aid future scaling up of the MVA process, the agglomerate size distribution in the MVA system was predicted by utilizing a force balance model coupled with a two-fluid model (TFM) simulation. The particle agglomerate size that was predicted using the computer simulation was validated with experimental data and found to be in good agreement.

Lastly, in order to demonstrate the utility of the MVA system in an air revitalization application, the capture of CO2 was examined. CO2 breakthrough time and adsorption capacities were tested in the MVA system and compared to a vibrating fluidized bed (VFB) system. Experimental results showed that the improved fluidity in the MVA system enhanced CO2 adsorption capacity.
ContributorsAn, Keju (Author) / Andino, Jean (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Adrian, Ronald (Committee member) / Emady, Heather (Committee member) / Kasbaoui, Mohamed (Committee member) / Arizona State University (Publisher)
Created2019
165177-Thumbnail Image.png
Description

An interface reconstruction algorithm for the Volume of Fluid (VOF) method is required for two-phase flow problems for advection of phase interface. The primary method for interface reconstruction has been through piecewise linear interface calculation (PLIC) reconstruction. However, while PLIC reconstruction is highly accurate at representing small curvature interfaces by

An interface reconstruction algorithm for the Volume of Fluid (VOF) method is required for two-phase flow problems for advection of phase interface. The primary method for interface reconstruction has been through piecewise linear interface calculation (PLIC) reconstruction. However, while PLIC reconstruction is highly accurate at representing small curvature interfaces by approximating planes across multiple grid cells, accuracy problems arise when the size of the mesh is too coarse to accurately approximate a large curvature without resorting to refining the mesh. An elliptic interface reconstructing algorithm is explored for two-phase flow problems in 2D to determine the viability of a higher-order interface reconstruction algorithm. This requires first developing an area overlap function between an arbitrary triangle and ellipse, which is then extended to calculate the area fraction field of an ellipse within a mesh. Then, the "reverse" problem of elliptic interface reconstruction given an area fraction field is examined. A study is conducted to determine the presence of any local minimums when varying the ellipse parameters. In the future, a multi-dimensional root-finding solver using Newton's Method will be developed to properly reconstruct the elliptic interface given the area fraction field.

ContributorsLee, Chase (Author) / Herrmann, Marcus (Thesis director) / Kasbaoui, Mohamed (Committee member) / Wells, Valana (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
190890-Thumbnail Image.png
Description
Four-Dimensional Emission Tomography (4DET) and Four-Dimensional Absorption Tomography (4DAT) are measurement techniques that utilize multiple 2D images (or projections) acquired via an optical device, such as a camera, to reconstruct scalar and velocity fields of a flow field being studied, using either emission- or absorption-based measurements, respectively. Turbulence is inherently

Four-Dimensional Emission Tomography (4DET) and Four-Dimensional Absorption Tomography (4DAT) are measurement techniques that utilize multiple 2D images (or projections) acquired via an optical device, such as a camera, to reconstruct scalar and velocity fields of a flow field being studied, using either emission- or absorption-based measurements, respectively. Turbulence is inherently three-dimensional, and thus research in the field benefits from a comprehensive understanding of coherent structures to fully explain the flow physics involved, for example, in the phenomena resulting from a turbulent jet. This thesis looks at the development, application and validity/practicality of emission tomography as an experimental approach to a obtaining a comprehensive understanding of coherent structures in turbulent flows. A pseudo test domain is decided upon, with a varying number of camera objects created to image the region of interest. Rays are then modelled as cylindrical volumes to build the weight matrix. Projection images are generated with Gaussian concentration defined as a spatial function of the domain to build the projection matrix. Finally, concentration within the domain, evaluated via the Least Squares method, is compared against original concentration values. The reconstruction algorithm is validated and checked for accuracy with DNS data of a steady turbulent jet. Reconstruction accuracy and a statistical analysis of the reconstructions are also presented.
ContributorsRodrigues, Cossack (Author) / Pathikonda, Gokul (Thesis advisor) / Grauer, Samuel (Committee member) / Adrian, Ronald (Committee member) / Kasbaoui, Mohamed (Committee member) / Kim, Jeonglae (Committee member) / Arizona State University (Publisher)
Created2023