Matching Items (37)

134286-Thumbnail Image.png

Fielding an Autonomous Cobot in a University Environment: Engineering and Evaluation

Description

Many researchers aspire to create robotics systems that assist humans in common office tasks, especially by taking over delivery and messaging tasks. For meaningful interactions to take place, a mobile

Many researchers aspire to create robotics systems that assist humans in common office tasks, especially by taking over delivery and messaging tasks. For meaningful interactions to take place, a mobile robot must be able to identify the humans it interacts with and communicate successfully with them. It must also be able to successfully navigate the office environment. While mobile robots are well suited for navigating and interacting with elements inside a deterministic office environment, attempting to interact with human beings in an office environment remains a challenge due to the limits on the amount of cost-efficient compute power onboard the robot. In this work, I propose the use of remote cloud services to offload intensive interaction tasks. I detail the interactions required in an office environment and discuss the challenges faced when implementing a human-robot interaction platform in a stochastic office environment. I also experiment with cloud services for facial recognition, speech recognition, and environment navigation and discuss my results. As part of my thesis, I have implemented a human-robot interaction system utilizing cloud APIs into a mobile robot, enabling it to navigate the office environment, identify humans within the environment, and communicate with these humans.

Contributors

Created

Date Created
  • 2017-05

134257-Thumbnail Image.png

HA-MRA: A Human-Aware Multi-Robot Architecture

Description

This thesis describes a multi-robot architecture which allows teams of robots to work with humans to complete tasks. The multi-agent architecture was built using Robot Operating System and Python. This

This thesis describes a multi-robot architecture which allows teams of robots to work with humans to complete tasks. The multi-agent architecture was built using Robot Operating System and Python. This architecture was designed modularly, allowing the use of different planners and robots. The system automatically replans when robots connect or disconnect. The system was demonstrated on two real robots, a Fetch and a PeopleBot, by conducting a surveillance task on the fifth floor of the Computer Science building at Arizona State University. The next part of the system includes extensions for teaming with humans. An Android application was created to serve as the interface between the system and human teammates. This application provides a way for the system to communicate with humans in the loop. In addition, it sends location information of the human teammates to the system so that goal recognition can be performed. This goal recognition allows the generation of human-aware plans. This capability was demonstrated in a mock search and rescue scenario using the Fetch to locate a missing teammate.

Contributors

Agent

Created

Date Created
  • 2017-05

158752-Thumbnail Image.png

Software-defined Situation-aware Cloud Security

Description

The use of reactive security mechanisms in enterprise networks can, at times, provide an asymmetric advantage to the attacker. Similarly, the use of a proactive security mechanism like Moving Target

The use of reactive security mechanisms in enterprise networks can, at times, provide an asymmetric advantage to the attacker. Similarly, the use of a proactive security mechanism like Moving Target Defense (MTD), if performed without analyzing the effects of security countermeasures, can lead to security policy and service level agreement violations. In this thesis, I explore the research questions 1) how to model attacker-defender interactions for multi-stage attacks? 2) how to efficiently deploy proactive (MTD) security countermeasures in a software-defined environment for single and multi-stage attacks? 3) how to verify the effects of security and management policies on the network and take corrective actions?

I propose a Software-defined Situation-aware Cloud Security framework, that, 1) analyzes the attacker-defender interactions using an Software-defined Networking (SDN) based scalable attack graph. This research investigates Advanced Persistent Threat (APT) attacks using a scalable attack graph. The framework utilizes a parallel graph partitioning algorithm to generate an attack graph quickly and efficiently. 2) models single-stage and multi-stage attacks (APTs) using the game-theoretic model and provides SDN-based MTD countermeasures. I propose a Markov Game for modeling multi-stage attacks. 3) introduces a multi-stage policy conflict checking framework at the SDN network's application plane. I present INTPOL, a new intent-driven security policy enforcement solution. INTPOL provides a unified language and INTPOL grammar that abstracts the network administrator from the underlying network controller's lexical rules. INTPOL develops a bounded formal model for network service compliance checking, which significantly reduces the number of countermeasures that needs to be deployed. Once the application-layer policy conflicts are resolved, I utilize an Object-Oriented Policy Conflict checking (OOPC) framework that identifies and resolves rule-order dependencies and conflicts between security policies.

Contributors

Agent

Created

Date Created
  • 2020

154975-Thumbnail Image.png

An investigation of topics in model-lite planning and multi-agent planning

Description

Automated planning addresses the problem of generating a sequence of actions that enable a set of agents to achieve their goals.This work investigates two important topics from the field of

Automated planning addresses the problem of generating a sequence of actions that enable a set of agents to achieve their goals.This work investigates two important topics from the field of automated planning, namely model-lite planning and multi-agent planning. For model-lite planning, I focus on a prominent model named Annotated PDDL and it's related application of robust planning. For this model, I try to identify a method of leveraging additional domain information (available in the form of successful plan traces). I use this information to refine the set of possible domains to generate more robust plans (as compared to the original planner) for any given problem. This method also provides us a way of overcoming one of the major drawbacks of the original approach, namely the need for a domain writer to explicitly identify the annotations.

For the second topic, the central question I ask is ``{\em under what conditions are multiple agents actually needed to solve a given planning problem?}''. To answer this question, the multi-agent planning (MAP) problem is classified into several sub-classes and I identify the conditions in each of these sub-classes that can lead to required cooperation (RC). I also identify certain sub-classes of multi-agent planning problems (named DVC-RC problems), where the problems can be simplified using a single virtual agent. This insight is later used to propose a new planner designed to solve problems from these subclasses. Evaluation of this new planner on all the current multi-agent planning benchmarks reveals that most current multi-agent planning benchmarks only belong to a small subset of possible classes of multi-agent planning problems.

Contributors

Agent

Created

Date Created
  • 2016

158485-Thumbnail Image.png

A Study on Generative Adversarial Networks Exacerbating Social Data Bias

Description

Generative Adversarial Networks are designed, in theory, to replicate the distribution of the data they are trained on. With real-world limitations, such as finite network capacity and training set size,

Generative Adversarial Networks are designed, in theory, to replicate the distribution of the data they are trained on. With real-world limitations, such as finite network capacity and training set size, they inevitably suffer a yet unavoidable technical failure: mode collapse. GAN-generated data is not nearly as diverse as the real-world data the network is trained on; this work shows that this effect is especially drastic when the training data is highly non-uniform. Specifically, GANs learn to exacerbate the social biases which exist in the training set along sensitive axes such as gender and race. In an age where many datasets are curated from web and social media data (which are almost never balanced), this has dangerous implications for downstream tasks using GAN-generated synthetic data, such as data augmentation for classification. This thesis presents an empirical demonstration of this phenomenon and illustrates its real-world ramifications. It starts by showing that when asked to sample images from an illustrative dataset of engineering faculty headshots from 47 U.S. universities, unfortunately skewed toward white males, a DCGAN’s generator “imagines” faces with light skin colors and masculine features. In addition, this work verifies that the generated distribution diverges more from the real-world distribution when the training data is non-uniform than when it is uniform. This work also shows that a conditional variant of GAN is not immune to exacerbating sensitive social biases. Finally, this work contributes a preliminary case study on Snapchat’s explosively popular GAN-enabled “My Twin” selfie lens, which consistently lightens the skin tone for women of color in an attempt to make faces more feminine. The results and discussion of the study are meant to caution machine learning practitioners who may unsuspectingly increase the biases in their applications.

Contributors

Agent

Created

Date Created
  • 2020

158720-Thumbnail Image.png

The What, When, and How of Strategic Movement in Adversarial Settings: A Syncretic View of AI and Security

Description

The field of cyber-defenses has played catch-up in the cat-and-mouse game of finding vulnerabilities followed by the invention of patches to defend against them. With the complexity and scale of

The field of cyber-defenses has played catch-up in the cat-and-mouse game of finding vulnerabilities followed by the invention of patches to defend against them. With the complexity and scale of modern-day software, it is difficult to ensure that all known vulnerabilities are patched; moreover, the attacker, with reconnaissance on their side, will eventually discover and leverage them. To take away the attacker's inherent advantage of reconnaissance, researchers have proposed the notion of proactive defenses such as Moving Target Defense (MTD) in cyber-security. In this thesis, I make three key contributions that help to improve the effectiveness of MTD.

First, I argue that naive movement strategies for MTD systems, designed based on intuition, are detrimental to both security and performance. To answer the question of how to move, I (1) model MTD as a leader-follower game and formally characterize the notion of optimal movement strategies, (2) leverage expert-curated public data and formal representation methods used in cyber-security to obtain parameters of the game, and (3) propose optimization methods to infer strategies at Strong Stackelberg Equilibrium, addressing issues pertaining to scalability and switching costs. Second, when one cannot readily obtain the parameters of the game-theoretic model but can interact with a system, I propose a novel multi-agent reinforcement learning approach that finds the optimal movement strategy. Third, I investigate the novel use of MTD in three domains-- cyber-deception, machine learning, and critical infrastructure networks. I show that the question of what to move poses non-trivial challenges in these domains. To address them, I propose methods for patch-set selection in the deployment of honey-patches, characterize the notion of differential immunity in deep neural networks, and develop optimization problems that guarantee differential immunity for dynamic sensor placement in power-networks.

Contributors

Agent

Created

Date Created
  • 2020

151471-Thumbnail Image.png

When is temporal planning really temporal

Description

In this dissertation I develop a deep theory of temporal planning well-suited to analyzing, understanding, and improving the state of the art implementations (as of 2012). At face-value the work

In this dissertation I develop a deep theory of temporal planning well-suited to analyzing, understanding, and improving the state of the art implementations (as of 2012). At face-value the work is strictly theoretical; nonetheless its impact is entirely real and practical. The easiest portion of that impact to highlight concerns the notable improvements to the format of the temporal fragment of the International Planning Competitions (IPCs). Particularly: the theory I expound upon here is the primary cause of--and justification for--the altered (i) selection of benchmark problems, and (ii) notion of "winning temporal planner". For higher level motivation: robotics, web service composition, industrial manufacturing, business process management, cybersecurity, space exploration, deep ocean exploration, and logistics all benefit from applying domain-independent automated planning technique. Naturally, actually carrying out such case studies has much to offer. For example, we may extract the lesson that reasoning carefully about deadlines is rather crucial to planning in practice. More generally, effectively automating specifically temporal planning is well-motivated from applications. Entirely abstractly, the aim is to improve the theory of automated temporal planning by distilling from its practice. My thesis is that the key feature of computational interest is concurrency. To support, I demonstrate by way of compilation methods, worst-case counting arguments, and analysis of algorithmic properties such as completeness that the more immediately pressing computational obstacles (facing would-be temporal generalizations of classical planning systems) can be dealt with in theoretically efficient manner. So more accurately the technical contribution here is to demonstrate: The computationally significant obstacle to automated temporal planning that remains is just concurrency.

Contributors

Agent

Created

Date Created
  • 2012

151605-Thumbnail Image.png

Connecting users with similar interests for group understanding

Description

In most social networking websites, users are allowed to perform interactive activities. One of the fundamental features that these sites provide is to connecting with users of their kind. On

In most social networking websites, users are allowed to perform interactive activities. One of the fundamental features that these sites provide is to connecting with users of their kind. On one hand, this activity makes online connections visible and tangible; on the other hand, it enables the exploration of our connections and the expansion of our social networks easier. The aggregation of people who share common interests forms social groups, which are fundamental parts of our social lives. Social behavioral analysis at a group level is an active research area and attracts many interests from the industry. Challenges of my work mainly arise from the scale and complexity of user generated behavioral data. The multiple types of interactions, highly dynamic nature of social networking and the volatile user behavior suggest that these data are complex and big in general. Effective and efficient approaches are required to analyze and interpret such data. My work provide effective channels to help connect the like-minded and, furthermore, understand user behavior at a group level. The contributions of this dissertation are in threefold: (1) proposing novel representation of collective tagging knowledge via tag networks; (2) proposing the new information spreader identification problem in egocentric soical networks; (3) defining group profiling as a systematic approach to understanding social groups. In sum, the research proposes novel concepts and approaches for connecting the like-minded, enables the understanding of user groups, and exposes interesting research opportunities.

Contributors

Agent

Created

Date Created
  • 2013

151129-Thumbnail Image.png

Trust and profit sensitive ranking for the deep web and on-line advertisements

Description

Ranking is of definitive importance to both usability and profitability of web information systems. While ranking of results is crucial for the accessibility of information to the user, the ranking

Ranking is of definitive importance to both usability and profitability of web information systems. While ranking of results is crucial for the accessibility of information to the user, the ranking of online ads increases the profitability of the search provider. The scope of my thesis includes both search and ad ranking. I consider the emerging problem of ranking the deep web data considering trustworthiness and relevance. I address the end-to-end deep web ranking by focusing on: (i) ranking and selection of the deep web databases (ii) topic sensitive ranking of the sources (iii) ranking the result tuples from the selected databases. Especially, assessing the trustworthiness and relevances of results for ranking is hard since the currently used link analysis is inapplicable (since deep web records do not have links). I formulated a method---namely SourceRank---to assess the trustworthiness and relevance of the sources based on the inter-source agreement. Secondly, I extend the SourceRank to consider the topic of the agreeing sources in multi-topic environments. Further, I formulate a ranking sensitive to trustworthiness and relevance for the individual results returned by the selected sources. For ad ranking, I formulate a generalized ranking function---namely Click Efficiency (CE)---based on a realistic user click model of ads and documents. The CE ranking considers hitherto ignored parameters of perceived relevance and user dissatisfaction. CE ranking guaranteeing optimal utilities for the click model. Interestingly, I show that the existing ad and document ranking functions are reduced forms of the CE ranking under restrictive assumptions. Subsequently, I extend the CE ranking to include a pricing mechanism, designing a complete auction mechanism. My analysis proves several desirable properties including revenue dominance over popular Vickery-Clarke-Groves (VCG) auctions for the same bid vector and existence of a Nash equilibrium in pure strategies. The equilibrium is socially optimal, and revenue equivalent to the truthful VCG equilibrium. Further, I relax the independence assumption in CE ranking and analyze the diversity ranking problem. I show that optimal diversity ranking is NP-Hard in general, and that a constant time approximation algorithm is not likely.

Contributors

Agent

Created

Date Created
  • 2012

154073-Thumbnail Image.png

Human factors analysis of automated planning technologies for human-robot teaming

Description

Humans and robots need to work together as a team to accomplish certain shared goals due to the limitations of current robot capabilities. Human assistance is required to accomplish the

Humans and robots need to work together as a team to accomplish certain shared goals due to the limitations of current robot capabilities. Human assistance is required to accomplish the tasks as human capabilities are often better suited for certain tasks and they complement robot capabilities in many situations. Given the necessity of human-robot teams, it has been long assumed that for the robotic agent to be an effective team member, it must be equipped with automated planning technologies that helps in achieving the goals that have been delegated to it by their human teammates as well as in deducing its own goal to proactively support its human counterpart by inferring their goals. However there has not been any systematic evaluation on the accuracy of this claim.

In my thesis, I perform human factors analysis on effectiveness of such automated planning technologies for remote human-robot teaming. In the first part of my study, I perform an investigation on effectiveness of automated planning in remote human-robot teaming scenarios. In the second part of my study, I perform an investigation on effectiveness of a proactive robot assistant in remote human-robot teaming scenarios.

Both investigations are conducted in a simulated urban search and rescue (USAR) scenario where the human-robot teams are deployed during early phases of an emergency response to explore all areas of the disaster scene. I evaluate through both the studies, how effective is automated planning technology in helping the human-robot teams move closer to human-human teams. I utilize both objective measures (like accuracy and time spent on primary and secondary tasks, Robot Attention Demand, etc.) and a set of subjective Likert-scale questions (on situation awareness, immediacy etc.) to investigate the trade-offs between different types of remote human-robot teams. The results from both the studies seem to suggest that intelligent robots with automated planning capability and proactive support ability is welcomed in general.

Contributors

Agent

Created

Date Created
  • 2015