Matching Items (966)

Filtering by

Clear all filters

132466-Thumbnail Image.png

Algebraic Structures in Mathematical Analysis

Description

The purpose of this senior thesis is to explore the abstract ideas that give rise to the well-known Fourier series and transforms. More specifically, finite group representations are used to study the structure of Hilbert spaces to determine under what

The purpose of this senior thesis is to explore the abstract ideas that give rise to the well-known Fourier series and transforms. More specifically, finite group representations are used to study the structure of Hilbert spaces to determine under what conditions an element of the space can be expanded as a sum. The Peter-Weyl theorem is the result that shows why integrable functions can be expressed in terms of trigonometric functions. Although some theorems will not be proved, the results that can be derived from them will be briefly discussed. For instance, the Pontryagin Duality theorem states that there is a canonical isomorphism between a group and the second dual of the group, and it can be used to prove $Plancherel$ theorem which essentially says that the Fourier transform is itself a unitary isomorphism.

Contributors

Created

Date Created
2019-05

132473-Thumbnail Image.png

On the Admittance of Frames in Hilbert C*-Modules

Description

The theory of frames for Hilbert spaces has become foundational in the study of wavelet analysis and has far-reaching applications in signal and image-processing. Originally, frames were first introduced in the early 1950's within the context of nonharmonic Fourier analysis

The theory of frames for Hilbert spaces has become foundational in the study of wavelet analysis and has far-reaching applications in signal and image-processing. Originally, frames were first introduced in the early 1950's within the context of nonharmonic Fourier analysis by Duffin and Schaeffer. It was then in 2000, when M. Frank and D. R. Larson extended the concept of frames to the setting of Hilbert C*-modules, it was in that same paper where they asked for which C*-algebras does every Hilbert C*-module admit a frame. Since then there have been a few direct answers to this question, one being that every Hilbert A-module over a C*-algebra, A, that has faithful representation into the C*-algebra of compact operators admits a frame. Another direct answer by Hanfeng Li given in 2010, is that any C*-algebra, A, such that every Hilbert C*-module admits a frame is necessarily finite dimensional. In this thesis we give an overview of the general theory of frames for Hilbert C*-modules and results answering the frame admittance property. We begin by giving an overview of the existing classical theory of frames in Hilbert spaces as well as some of the preliminary theory of Hilbert C*-modules such as Morita equivalence and certain tensor product constructions of C*-algebras. We then show how some results of frames can be extended to the case of standard frames in countably generated Hilbert C*-modules over unital C*-algebras, namely the frame decomposition property and existence of the frame transform operator. We conclude by going through some proofs/constructions that answer the question of frame admittance for certain Hilbert C*-modules.

Contributors

Agent

Created

Date Created
2019-05