Matching Items (4)
152165-Thumbnail Image.png
Description
Surgery as a profession requires significant training to improve both clinical decision making and psychomotor proficiency. In the medical knowledge domain, tools have been developed, validated, and accepted for evaluation of surgeons' competencies. However, assessment of the psychomotor skills still relies on the Halstedian model of apprenticeship, wherein surgeons are

Surgery as a profession requires significant training to improve both clinical decision making and psychomotor proficiency. In the medical knowledge domain, tools have been developed, validated, and accepted for evaluation of surgeons' competencies. However, assessment of the psychomotor skills still relies on the Halstedian model of apprenticeship, wherein surgeons are observed during residency for judgment of their skills. Although the value of this method of skills assessment cannot be ignored, novel methodologies of objective skills assessment need to be designed, developed, and evaluated that augment the traditional approach. Several sensor-based systems have been developed to measure a user's skill quantitatively, but use of sensors could interfere with skill execution and thus limit the potential for evaluating real-life surgery. However, having a method to judge skills automatically in real-life conditions should be the ultimate goal, since only with such features that a system would be widely adopted. This research proposes a novel video-based approach for observing surgeons' hand and surgical tool movements in minimally invasive surgical training exercises as well as during laparoscopic surgery. Because our system does not require surgeons to wear special sensors, it has the distinct advantage over alternatives of offering skills assessment in both learning and real-life environments. The system automatically detects major skill-measuring features from surgical task videos using a computing system composed of a series of computer vision algorithms and provides on-screen real-time performance feedback for more efficient skill learning. Finally, the machine-learning approach is used to develop an observer-independent composite scoring model through objective and quantitative measurement of surgical skills. To increase effectiveness and usability of the developed system, it is integrated with a cloud-based tool, which automatically assesses surgical videos upload to the cloud.
ContributorsIslam, Gazi (Author) / Li, Baoxin (Thesis advisor) / Liang, Jianming (Thesis advisor) / Dinu, Valentin (Committee member) / Greenes, Robert (Committee member) / Smith, Marshall (Committee member) / Kahol, Kanav (Committee member) / Patel, Vimla L. (Committee member) / Arizona State University (Publisher)
Created2013
151151-Thumbnail Image.png
Description
Technology in the modern day has ensured that learning of skills and behavior may be both widely disseminated and cheaply available. An example of this is the concept of virtual reality (VR) training. Virtual Reality training ensures that learning can be provided often, in a safe simulated setting, and it

Technology in the modern day has ensured that learning of skills and behavior may be both widely disseminated and cheaply available. An example of this is the concept of virtual reality (VR) training. Virtual Reality training ensures that learning can be provided often, in a safe simulated setting, and it may be delivered in a manner that makes it engaging while negating the need to purchase special equipment. This thesis presents a case study in the form of a time critical, team based medical scenario known as Advanced Cardiac Life Support (ACLS). A framework and methodology associated with the design of a VR trainer for ACLS is detailed. In addition, in order to potentially provide an engaging experience, the simulator was designed to incorporate immersive elements and a multimodal interface (haptic, visual, and auditory). A study was conducted to test two primary hypotheses namely: a meaningful transfer of skill is achieved from virtual reality training to real world mock codes and the presence of immersive components in virtual reality leads to an increase in the performance gained. The participant pool consisted of 54 clinicians divided into 9 teams of 6 members each. The teams were categorized into three treatment groups: immersive VR (3 teams), minimally immersive VR (3 teams), and control (3 teams). The study was conducted in 4 phases from a real world mock code pretest to assess baselines to a 30 minute VR training session culminating in a final mock code to assess the performance change from the baseline. The minimally immersive team was treated as control for the immersive components. The teams were graded, in both VR and mock code sessions, using the evaluation metric used in real world mock codes. The study revealed that the immersive VR groups saw greater performance gain from pretest to posttest than the minimally immersive and control groups in case of the VFib/VTach scenario (~20% to ~5%). Also the immersive VR groups had a greater performance gain than the minimally immersive groups from the first to the final session of VFib/VTach (29% to -13%) and PEA (27% to 15%).
ContributorsVankipuram, Akshay (Author) / Li, Baoxin (Thesis advisor) / Burleson, Winslow (Committee member) / Kahol, Kanav (Committee member) / Arizona State University (Publisher)
Created2012
156859-Thumbnail Image.png
Description
The analysis of clinical workflow offers many challenges to clinical stakeholders and researchers, especially in environments characterized by dynamic and concurrent processes. Workflow analysis in such environments is essential for monitoring performance and finding bottlenecks and sources of error. Clinical workflow analysis has been enhanced with the inclusion of modern

The analysis of clinical workflow offers many challenges to clinical stakeholders and researchers, especially in environments characterized by dynamic and concurrent processes. Workflow analysis in such environments is essential for monitoring performance and finding bottlenecks and sources of error. Clinical workflow analysis has been enhanced with the inclusion of modern technologies. One such intervention is automated location tracking which is a system that detects the movement of clinicians and equipment. Utilizing the data produced from automated location tracking technologies can lead to the development of novel workflow analytics that can be used to complement more traditional approaches such as ethnography and grounded-theory based qualitative methods. The goals of this research are to: (i) develop a series of analytic techniques to derive deeper workflow-related insight in an emergency department setting, (ii) overlay data from disparate sources (quantitative and qualitative) to develop strategies that facilitate workflow redesign, and (iii) incorporate visual analytics methods to improve the targeted visual feedback received by providers based on the findings. The overarching purpose is to create a framework to demonstrate the utility of automated location tracking data used in conjunction with clinical data like EHR logs and its vital role in the future of clinical workflow analysis/analytics. This document is categorized based on two primary aims of the research. The first aim deals with the use of automated location tracking data to develop a novel methodological/exploratory framework for clinical workflow. The second aim is to overlay the quantitative data generated from the previous aim on data from qualitative observation and shadowing studies (mixed methods) to develop a deeper view of clinical workflow that can be used to facilitate workflow redesign. The final sections of the document speculate on the direction of this work where the potential of this research in the creation of fully integrated clinical environments i.e. environments with state-of-the-art location tracking and other data collection mechanisms, is discussed. The main purpose of this research is to demonstrate ways by which clinical processes can be continuously monitored allowing for proactive adaptations in the face of technological and process changes to minimize any negative impact on the quality of patient care and provider satisfaction.
ContributorsVankipuram, Akshay (Author) / Patel, Vimla L. (Thesis advisor) / Wang, Dongwen (Thesis advisor) / Shortliffe, Edward H (Committee member) / Kaufman, David R. (Committee member) / Traub, Stephen J (Committee member) / Arizona State University (Publisher)
Created2018
149535-Thumbnail Image.png
Description
In the modern age, where teams consist of people from disparate locations, remote team training is highly desired. Moreover, team members' overlapping schedules force their mentors to focus on individual training instead of team training. Team training is an integral part of collaborative team work. With the advent of modern

In the modern age, where teams consist of people from disparate locations, remote team training is highly desired. Moreover, team members' overlapping schedules force their mentors to focus on individual training instead of team training. Team training is an integral part of collaborative team work. With the advent of modern technologies such as Web 2.0, cloud computing, etc. it is possible to revolutionize the delivery of time-critical team training in varied domains of healthcare military and education. Collaborative Virtual Environments (CVEs), also known as virtual worlds, and the existing worldwide footprint of high speed internet, would make remote team training ubiquitous. Such an integrated system would potentially help in assisting actual mentors to overcome the challenges in team training. ACLS is a time-critical activity which requires a high performance team effort. This thesis proposes a system that leverages a virtual world (VW) and provides an integrated learning platform for Advanced Cardiac Life Support (ACLS) case scenarios. The system integrates feedback devices such as haptic device so that real time feedback can be provided. Participants can log in remotely and work in a team to diagnose the given scenario. They can be trained and tested for ACLS within the virtual world. This system is well equipped with persuasive elements which aid in learning. The simulated training in this system was validated to teach novices the procedural aspect of ACLS. Sixteen participants were divided into four groups (two control groups and two experimental groups) of four participants. All four groups went through didactic session where they learned about ACLS and its procedures. A quiz after the didactic session revealed that all four groups had equal knowledge about ACLS. The two experimental groups went through training and testing in the virtual world. Experimental group 2 which was aided by the persuasive elements performed better than the control group. To validate the training capabilities of the virtual world system, final transfer test was conducted in real world setting at Banner Simulation Center on high fidelity mannequins. The test revealed that the experimental groups (average score 65/100) performed better than the control groups (average score 16/100). The experimental group 2 which was aided by the persuasive elements (average score 70/100) performed better than the experimental group 1 (average score 55/100). This shows that the persuasive technology can be useful for training purposes.
ContributorsParab, Sainath (Author) / Kahol, Kanav (Thesis advisor) / Burleson, Wnslow (Thesis advisor) / Li, Baioxin (Committee member) / Arizona State University (Publisher)
Created2010