Matching Items (47)
152033-Thumbnail Image.png
Description
The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of

The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of engineered complex systems and predict their future adaptive patterns. The approach allows the examination of complexity in the structure and the behavior of components as a result of their connections and in relation to their environment. This research describes and uses the major differences of natural complex adaptive systems (CASs) with artificial/engineered CASs to build a framework and platform for ECAS. While this framework focuses on the critical factors of an engineered system, it also enables one to synthetically employ engineering and mathematical models to analyze and measure complexity in such systems. In this way concepts of complex systems science are adapted to management science and system of systems engineering. In particular an integrated consumer-based optimization and agent-based modeling (ABM) platform is presented that enables managers to predict and partially control patterns of behaviors in ECASs. Demonstrated on the U.S. electricity markets, ABM is integrated with normative and subjective decision behavior recommended by the U.S. Department of Energy (DOE) and Federal Energy Regulatory Commission (FERC). The approach integrates social networks, social science, complexity theory, and diffusion theory. Furthermore, it has unique and significant contribution in exploring and representing concrete managerial insights for ECASs and offering new optimized actions and modeling paradigms in agent-based simulation.
ContributorsHaghnevis, Moeed (Author) / Askin, Ronald G. (Thesis advisor) / Armbruster, Dieter (Thesis advisor) / Mirchandani, Pitu (Committee member) / Wu, Tong (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2013
151341-Thumbnail Image.png
Description
With the rapid development of mobile sensing technologies like GPS, RFID, sensors in smartphones, etc., capturing position data in the form of trajectories has become easy. Moving object trajectory analysis is a growing area of interest these days owing to its applications in various domains such as marketing, security, traffic

With the rapid development of mobile sensing technologies like GPS, RFID, sensors in smartphones, etc., capturing position data in the form of trajectories has become easy. Moving object trajectory analysis is a growing area of interest these days owing to its applications in various domains such as marketing, security, traffic monitoring and management, etc. To better understand movement behaviors from the raw mobility data, this doctoral work provides analytic models for analyzing trajectory data. As a first contribution, a model is developed to detect changes in trajectories with time. If the taxis moving in a city are viewed as sensors that provide real time information of the traffic in the city, a change in these trajectories with time can reveal that the road network has changed. To detect changes, trajectories are modeled with a Hidden Markov Model (HMM). A modified training algorithm, for parameter estimation in HMM, called m-BaumWelch, is used to develop likelihood estimates under assumed changes and used to detect changes in trajectory data with time. Data from vehicles are used to test the method for change detection. Secondly, sequential pattern mining is used to develop a model to detect changes in frequent patterns occurring in trajectory data. The aim is to answer two questions: Are the frequent patterns still frequent in the new data? If they are frequent, has the time interval distribution in the pattern changed? Two different approaches are considered for change detection, frequency-based approach and distribution-based approach. The methods are illustrated with vehicle trajectory data. Finally, a model is developed for clustering and outlier detection in semantic trajectories. A challenge with clustering semantic trajectories is that both numeric and categorical attributes are present. Another problem to be addressed while clustering is that trajectories can be of different lengths and also have missing values. A tree-based ensemble is used to address these problems. The approach is extended to outlier detection in semantic trajectories.
ContributorsKondaveeti, Anirudh (Author) / Runger, George C. (Thesis advisor) / Mirchandani, Pitu (Committee member) / Pan, Rong (Committee member) / Maciejewski, Ross (Committee member) / Arizona State University (Publisher)
Created2012
Description
To guide the timetabling and vehicle assignment of urban bus systems, a group of optimization models were developed for scenarios from simple to complex. The model took the interaction of prospective passengers and bus companies into consideration to achieve the maximum financial benefit as

To guide the timetabling and vehicle assignment of urban bus systems, a group of optimization models were developed for scenarios from simple to complex. The model took the interaction of prospective passengers and bus companies into consideration to achieve the maximum financial benefit as well as social satisfaction. The model was verified by a series of case studies and simulation from which some interesting conclusions were drawn.
ContributorsHuang, Shiyang (Author) / Askin, Ronald G. (Thesis advisor) / Mirchandani, Pitu (Committee member) / McCarville, Daniel R. (Committee member) / Arizona State University (Publisher)
Created2014
153348-Thumbnail Image.png
Description
This research develops heuristics for scheduling electric power production amid uncertainty. Reliability is becoming more difficult to manage due to growing uncertainty from renewable resources. This challenge is compounded by the risk of resource outages, which can occur any time and without warning. Stochastic optimization is a promising tool but

This research develops heuristics for scheduling electric power production amid uncertainty. Reliability is becoming more difficult to manage due to growing uncertainty from renewable resources. This challenge is compounded by the risk of resource outages, which can occur any time and without warning. Stochastic optimization is a promising tool but remains computationally intractable for large systems. The models used in industry instead schedule for the forecast and withhold generation reserve for scenario response, but they are blind to how this reserve may be constrained by network congestion. This dissertation investigates more effective heuristics to improve economics and reliability in power systems where congestion is a concern.

Two general approaches are developed. Both approximate the effects of recourse decisions without actually solving a stochastic model. The first approach procures more reserve whenever approximate recourse policies stress the transmission network. The second approach procures reserve at prime locations by generalizing the existing practice of reserve disqualification. The latter approach is applied for feasibility and is later extended to limit scenario costs. Testing demonstrates expected cost improvements around 0.5%-1.0% for the IEEE 73-bus test case, which can translate to millions of dollars per year even for modest systems. The heuristics developed in this dissertation perform somewhere between established deterministic and stochastic models: providing an economic benefit over current practices without substantially increasing computational times.
ContributorsLyon, Joshua Daniel (Author) / Zhang, Muhong (Thesis advisor) / Hedman, Kory W (Thesis advisor) / Askin, Ronald G. (Committee member) / Mirchandani, Pitu (Committee member) / Arizona State University (Publisher)
Created2015
151051-Thumbnail Image.png
Description
Today's competitive markets force companies to constantly engage in the complex task of managing their demand. In make-to-order manufacturing or service systems, the demand of a product is shaped by price and lead times, where high price and lead time quotes ensure profitability for supplier, but discourage the customers from

Today's competitive markets force companies to constantly engage in the complex task of managing their demand. In make-to-order manufacturing or service systems, the demand of a product is shaped by price and lead times, where high price and lead time quotes ensure profitability for supplier, but discourage the customers from placing orders. Low price and lead times, on the other hand, generally result in high demand, but do not necessarily ensure profitability. The price and lead time quotation problem considers the trade-off between offering high and low prices and lead times. The recent practices in make-to- order manufacturing companies reveal the importance of dynamic quotation strategies, under which the prices and lead time quotes flexibly change depending on the status of the system. In this dissertation, the objective is to model a make-to-order manufacturing system and explore various aspects of dynamic quotation strategies such as the behavior of optimal price and lead time decisions, the impact of customer preferences on optimal decisions, the benefits of employing dynamic quotation in comparison to simpler quotation strategies, and the benefits of coordinating price and lead time decisions. I first consider a manufacturer that receives demand from spot purchasers (who are quoted dynamic price and lead times), as well as from contract customers who have agree- ments with the manufacturer with fixed price and lead time terms. I analyze how customer preferences affect the optimal price and lead time decisions, the benefits of dynamic quo- tation, and the optimal mix of spot purchaser and contract customers. These analyses necessitate the computation of expected tardiness of customer orders at the moment cus- tomer enters the system. Hence, in the second part of the dissertation, I develop method- ologies to compute the expected tardiness in multi-class priority queues. For the trivial single class case, a closed formulation is obtained. For the more complex multi-class case, numerical inverse Laplace transformation algorithms are developed. In the last part of the dissertation, I model a decentralized system with two components. Marketing department determines the price quotes with the objective of maximizing revenues, and manufacturing department determines the lead time quotes to minimize lateness costs. I discuss the ben- efits of coordinating price and lead time decisions, and develop an incentivization scheme to reduce the negative impacts of lack of coordination.
ContributorsHafizoglu, Ahmet Baykal (Author) / Gel, Esma S (Thesis advisor) / Villalobos, Jesus R (Committee member) / Mirchandani, Pitu (Committee member) / Keskinocak, Pinar (Committee member) / Runger, George C. (Committee member) / Arizona State University (Publisher)
Created2012
156337-Thumbnail Image.png
Description
Healthcare operations have enjoyed reduced costs, improved patient safety, and

innovation in healthcare policy over a huge variety of applications by tackling prob-

lems via the creation and optimization of descriptive mathematical models to guide

decision-making. Despite these accomplishments, models are stylized representations

of real-world applications, reliant on accurate estimations from historical data to

Healthcare operations have enjoyed reduced costs, improved patient safety, and

innovation in healthcare policy over a huge variety of applications by tackling prob-

lems via the creation and optimization of descriptive mathematical models to guide

decision-making. Despite these accomplishments, models are stylized representations

of real-world applications, reliant on accurate estimations from historical data to jus-

tify their underlying assumptions. To protect against unreliable estimations which

can adversely affect the decisions generated from applications dependent on fully-

realized models, techniques that are robust against misspecications are utilized while

still making use of incoming data for learning. Hence, new robust techniques are ap-

plied that (1) allow for the decision-maker to express a spectrum of pessimism against

model uncertainties while (2) still utilizing incoming data for learning. Two main ap-

plications are investigated with respect to these goals, the first being a percentile

optimization technique with respect to a multi-class queueing system for application

in hospital Emergency Departments. The second studies the use of robust forecasting

techniques in improving developing countries’ vaccine supply chains via (1) an inno-

vative outside of cold chain policy and (2) a district-managed approach to inventory

control. Both of these research application areas utilize data-driven approaches that

feature learning and pessimism-controlled robustness.
ContributorsBren, Austin (Author) / Saghafian, Soroush (Thesis advisor) / Mirchandani, Pitu (Thesis advisor) / Wu, Teresa (Committee member) / Pan, Rong (Committee member) / Arizona State University (Publisher)
Created2018
156345-Thumbnail Image.png
Description
The energy consumption by public drinking water and wastewater utilities represent up to 30%-40% of a municipality energy bill. The largest energy consumption is used to operate motors for pumping. As a result, the engineering and control community develop the Variable Speed Pumps (VSPs) which allow for regulating valves in

The energy consumption by public drinking water and wastewater utilities represent up to 30%-40% of a municipality energy bill. The largest energy consumption is used to operate motors for pumping. As a result, the engineering and control community develop the Variable Speed Pumps (VSPs) which allow for regulating valves in the network instead of the traditional binary ON/OFF pumps. Potentially, VSPs save up to 90% of annual energy cost compared to the binary pump. The control problem has been tackled in the literature as “Pump Scheduling Optimization” (PSO) with a main focus on the cost minimization. Nonetheless, engineering literature is mostly concerned with the problem of understanding “healthy working conditions” (e.g., leakages, breakages) for a water infrastructure rather than the costs. This is very critical because if we operate a network under stress, it may satisfy the demand at present but will likely hinder network functionality in the future.

This research addresses the problem of analyzing working conditions of large water systems by means of a detailed hydraulic simulation model (e.g., EPANet) to gain insights into feasibility with respect to pressure, tank level, etc. This work presents a new framework called Feasible Set Approximation – Probabilistic Branch and Bound (FSA-PBnB) for the definition and determination of feasible solutions in terms of pumps regulation. We propose the concept of feasibility distance, which is measured as the distance of the current solution from the feasibility frontier to estimate the distribution of the feasibility values across the solution space. Based on this estimate, pruning the infeasible regions and maintaining the feasible regions are proposed to identify the desired feasible solutions. We test the proposed algorithm with both theoretical and real water networks. The results demonstrate that FSA-PBnB has the capability to identify the feasibility profile in an efficient way. Additionally, with the feasibility distance, we can understand the quality of sub-region in terms of feasibility.

The present work provides a basic feasibility determination framework on the low dimension problems. When FSA-PBnB extends to large scale constraint optimization problems, a more intelligent sampling method may be developed to further reduce the computational effort.
ContributorsTsai, Yi-An (Author) / Pedrielli, Giulia (Thesis advisor) / Mirchandani, Pitu (Committee member) / Mascaro, Giuseppe (Committee member) / Zabinsky, Zelda (Committee member) / Candelieri, Antonio (Committee member) / Arizona State University (Publisher)
Created2018
156252-Thumbnail Image.png
Description
Recently, automation, shared use, and electrification are proposed and viewed as the “three revolutions” in the future transportation sector to significantly relieve traffic congestion, reduce pollutant emissions, and increase transportation system sustainability. Motivated by the three revolutions, this research targets on the passenger-focused scheduled transportation systems, where (1) the public

Recently, automation, shared use, and electrification are proposed and viewed as the “three revolutions” in the future transportation sector to significantly relieve traffic congestion, reduce pollutant emissions, and increase transportation system sustainability. Motivated by the three revolutions, this research targets on the passenger-focused scheduled transportation systems, where (1) the public transit systems provide high-quality ridesharing schedules/services and (2) the upcoming optimal activity planning systems offer the best vehicle routing and assignment for household daily scheduled activities.

The high quality of system observability is the fundamental guarantee for accurately predicting and controlling the system. The rich information from the emerging heterogeneous data sources is making it possible. This research proposes a modeling framework to systemically account for the multi-source sensor information in urban transit systems to quantify the estimated state uncertainty. A system of linear equations and inequalities is proposed to generate the information space. Also, the observation errors are further considered by a least square model. Then, a number of projection functions are introduced to match the relation between the unique information space and different system states, and its corresponding state estimate uncertainties are further quantified by calculating its maximum state range.

In addition to optimizing daily operations, the continuing advances in information technology provide precious individual travel behavior data and trip information for operational planning in transit systems. This research also proposes a new alternative modeling framework to systemically account for boundedly rational decision rules of travelers in a dynamic transit service network with tight capacity constraints. An agent-based single-level integer linear formulation is proposed and can be effectively by the Lagrangian decomposition.

The recently emerging trend of self-driving vehicles and information sharing technologies starts creating a revolutionary paradigm shift for traveler mobility applications. By considering a deterministic traveler decision making framework, this research addresses the challenges of how to optimally schedule household members’ daily scheduled activities under the complex household-level activity constraints by proposing a set of integer linear programming models. Meanwhile, in the microscopic car-following level, the trajectory optimization of autonomous vehicles is also studied by proposing a binary integer programming model.
ContributorsLiu, Jiangtao (Author) / Zhou, Xuesong (Thesis advisor) / Pendyala, Ram (Committee member) / Mirchandani, Pitu (Committee member) / Lou, Yingyan (Committee member) / Arizona State University (Publisher)
Created2018
156625-Thumbnail Image.png
Description
With trends of globalization on rise, predominant of the trades happen by sea, and experts have predicted an increase in trade volumes over the next few years. With increasing trade volumes, container ships’ upsizing is being carried out to meet the demand. But the problem with container ships’ upsizing is

With trends of globalization on rise, predominant of the trades happen by sea, and experts have predicted an increase in trade volumes over the next few years. With increasing trade volumes, container ships’ upsizing is being carried out to meet the demand. But the problem with container ships’ upsizing is that the sea port terminals must be equipped adequately to improve the turnaround time otherwise the container ships’ upsizing would not yield the anticipated benefits. This thesis focus on a special type of a double automated crane set-up, with a finite interoperational buffer capacity. The buffer is placed in between the cranes, and the idea behind this research is to analyze the performance of the crane operations when this technology is adopted. This thesis proposes the approximation of this complex system, thereby addressing the computational time issue and allowing to efficiently analyze the performance of the system. The approach to model this system has been carried out in two phases. The first phase consists of the development of discrete event simulation model to make the system evolve over time. The challenges of this model are its high processing time which consists of performing large number of experimental runs, thus laying the foundation for the development of the analytical model of the system, and with respect to analytical modeling, a continuous time markov process approach has been adopted. Further, to improve the efficiency of the analytical model, a state aggregation approach is proposed. Thus, this thesis would give an insight on the outcomes of the two approaches and the behavior of the error space, and the performance of the models for the varying buffer capacities would reflect the scope of improvement in these kinds of operational set up.
ContributorsRengarajan, Sundaravaradhan (Author) / Pedrielli, Giulia (Thesis advisor) / Ju, Feng (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2018
157244-Thumbnail Image.png
Description
I study the problem of locating Relay nodes (RN) to improve the connectivity of a set

of already deployed sensor nodes (SN) in a Wireless Sensor Network (WSN). This is

known as the Relay Node Placement Problem (RNPP). In this problem, one or more

nodes called Base Stations (BS) serve as the collection

I study the problem of locating Relay nodes (RN) to improve the connectivity of a set

of already deployed sensor nodes (SN) in a Wireless Sensor Network (WSN). This is

known as the Relay Node Placement Problem (RNPP). In this problem, one or more

nodes called Base Stations (BS) serve as the collection point of all the information

captured by SNs. SNs have limited transmission range and hence signals are transmitted

from the SNs to the BS through multi-hop routing. As a result, the WSN

is said to be connected if there exists a path for from each SN to the BS through

which signals can be hopped. The communication range of each node is modeled

with a disk of known radius such that two nodes are said to communicate if their

communication disks overlap. The goal is to locate a given number of RNs anywhere

in the continuous space of the WSN to maximize the number of SNs connected (i.e.,

maximize the network connectivity). To solve this problem, I propose an integer

programming based approach that iteratively approximates the Euclidean distance

needed to enforce sensor communication. This is achieved through a cutting-plane

approach with a polynomial-time separation algorithm that identies distance violations.

I illustrate the use of my algorithm on large-scale instances of up to 75 nodes

which can be solved in less than 60 minutes. The proposed method shows solutions

times many times faster than an alternative nonlinear formulation.
ContributorsSurendran, Vishal Sairam Jaitra (Author) / Sefair, Jorge (Thesis advisor) / Mirchandani, Pitu (Committee member) / Grubesic, Anthony (Committee member) / Arizona State University (Publisher)
Created2019