Matching Items (188)
Filtering by

Clear all filters

151690-Thumbnail Image.png
Description
Practical communication systems are subject to errors due to imperfect time alignment among the communicating nodes. Timing errors can occur in different forms depending on the underlying communication scenario. This doctoral study considers two different classes of asynchronous systems; point-to-point (P2P) communication systems with synchronization errors, and asynchronous cooperative systems.

Practical communication systems are subject to errors due to imperfect time alignment among the communicating nodes. Timing errors can occur in different forms depending on the underlying communication scenario. This doctoral study considers two different classes of asynchronous systems; point-to-point (P2P) communication systems with synchronization errors, and asynchronous cooperative systems. In particular, the focus is on an information theoretic analysis for P2P systems with synchronization errors and developing new signaling solutions for several asynchronous cooperative communication systems. The first part of the dissertation presents several bounds on the capacity of the P2P systems with synchronization errors. First, binary insertion and deletion channels are considered where lower bounds on the mutual information between the input and output sequences are computed for independent uniformly distributed (i.u.d.) inputs. Then, a channel suffering from both synchronization errors and additive noise is considered as a serial concatenation of a synchronization error-only channel and an additive noise channel. It is proved that the capacity of the original channel is lower bounded in terms of the synchronization error-only channel capacity and the parameters of both channels. On a different front, to better characterize the deletion channel capacity, the capacity of three independent deletion channels with different deletion probabilities are related through an inequality resulting in the tightest upper bound on the deletion channel capacity for deletion probabilities larger than 0.65. Furthermore, the first non-trivial upper bound on the 2K-ary input deletion channel capacity is provided by relating the 2K-ary input deletion channel capacity with the binary deletion channel capacity through an inequality. The second part of the dissertation develops two new relaying schemes to alleviate asynchronism issues in cooperative communications. The first one is a single carrier (SC)-based scheme providing a spectrally efficient Alamouti code structure at the receiver under flat fading channel conditions by reducing the overhead needed to overcome the asynchronism and obtain spatial diversity. The second one is an orthogonal frequency division multiplexing (OFDM)-based approach useful for asynchronous cooperative systems experiencing excessive relative delays among the relays under frequency-selective channel conditions to achieve a delay diversity structure at the receiver and extract spatial diversity.
ContributorsRahmati, Mojtaba (Author) / Duman, Tolga M. (Thesis advisor) / Zhang, Junshan (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2013
152193-Thumbnail Image.png
Description
Global Positioning System (GPS) is a navigation system widely used in civilian and military application, but its accuracy is highly impacted with consequential fading, and possible loss of communication due to multipath propagation and high power interferences. This dissertation proposes alternatives to improve the performance of the GPS receivers to

Global Positioning System (GPS) is a navigation system widely used in civilian and military application, but its accuracy is highly impacted with consequential fading, and possible loss of communication due to multipath propagation and high power interferences. This dissertation proposes alternatives to improve the performance of the GPS receivers to obtain a system that can be reliable in critical situations. The basic performance of the GPS receiver consists of receiving the signal with an antenna array, delaying the signal at each antenna element, weighting the delayed replicas, and finally, combining the weighted replicas to estimate the desired signal. Based on these, three modifications are proposed to improve the performance of the system. The first proposed modification is the use of the Least Mean Squares (LMS) algorithm with two variations to decrease the convergence time of the classic LMS while achieving good system stability. The results obtained by the proposed LMS demonstrate that the algorithm can achieve the same stability as the classic LMS using a small step size, and its convergence rate is better than the classic LMS using a large step size. The second proposed modification is to replace the uniform distribution of the time delays (or taps) by an exponential distribution that decreases the bit-error rate (BER) of the system without impacting the computational efficiency of the uniform taps. The results show that, for a BER of 0.001, the system can operate with a 1 to 2 dB lower signal-to-noise ratio (SNR) when an exponential distribution is used rather than a uniform distribution. Finally, the third modification is implemented in the design of the antenna array. In this case, the gain of each microstrip element is enhanced by embedding ferrite rings in the substrate, creating a hybrid substrate. The ferrite rings generates constructive interference between the incident and reflected fields; consequently, the gain of a single microstrip element is enhanced by up to 4 dB. When hybrid substrates are used in microstrip element arrays, a significant enhancement in angle range is achieved for a given reflection coefficient compared to using a conventional substrate.
ContributorsRivera-Albino, Alix (Author) / Balanis, Constantine A (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Kiaei, Sayfe (Committee member) / Aberle, James T (Committee member) / Arizona State University (Publisher)
Created2013
152198-Thumbnail Image.png
Description
The processing power and storage capacity of portable devices have improved considerably over the past decade. This has motivated the implementation of sophisticated audio and other signal processing algorithms on such mobile devices. Of particular interest in this thesis is audio/speech processing based on perceptual criteria. Specifically, estimation of parameters

The processing power and storage capacity of portable devices have improved considerably over the past decade. This has motivated the implementation of sophisticated audio and other signal processing algorithms on such mobile devices. Of particular interest in this thesis is audio/speech processing based on perceptual criteria. Specifically, estimation of parameters from human auditory models, such as auditory patterns and loudness, involves computationally intensive operations which can strain device resources. Hence, strategies for implementing computationally efficient human auditory models for loudness estimation have been studied in this thesis. Existing algorithms for reducing computations in auditory pattern and loudness estimation have been examined and improved algorithms have been proposed to overcome limitations of these methods. In addition, real-time applications such as perceptual loudness estimation and loudness equalization using auditory models have also been implemented. A software implementation of loudness estimation on iOS devices is also reported in this thesis. In addition to the loudness estimation algorithms and software, in this thesis project we also created new illustrations of speech and audio processing concepts for research and education. As a result, a new suite of speech/audio DSP functions was developed and integrated as part of the award-winning educational iOS App 'iJDSP." These functions are described in detail in this thesis. Several enhancements in the architecture of the application have also been introduced for providing the supporting framework for speech/audio processing. Frame-by-frame processing and visualization functionalities have been developed to facilitate speech/audio processing. In addition, facilities for easy sound recording, processing and audio rendering have also been developed to provide students, practitioners and researchers with an enriched DSP simulation tool. Simulations and assessments have been also developed for use in classes and training of practitioners and students.
ContributorsKalyanasundaram, Girish (Author) / Spanias, Andreas S (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2013
152099-Thumbnail Image.png
Description
The body is capable of regulating hunger in several ways. Some of these hunger regulation methods are innate, such as genetics, and some, such as the responses to stress and to the smell of food, are innate but can be affected by body conditions such as BMI and physical activity.

The body is capable of regulating hunger in several ways. Some of these hunger regulation methods are innate, such as genetics, and some, such as the responses to stress and to the smell of food, are innate but can be affected by body conditions such as BMI and physical activity. Further, some hunger regulation methods stem from learned behaviors originating from cultural pressures or parenting styles. These latter regulation methods for hunger can be grouped into the categories: emotion, environment, and physical. The factors that regulate hunger can also influence the incidence of disordered eating, such as eating in the absence of hunger (EAH). Eating in the absence of hunger can occur in one of two scenarios, continuous EAH or beginning EAH. College students are at a particularly high risk for EAH and weight gain due to stress, social pressures, and the constant availability of energy dense and nutrient poor food options. The purpose of this study is to validate a modified EAH-C survey in college students and to discover which of the three latent factors (emotion, environment, physical) best predicts continual and beginning EAH. To do so, a modified EAH-C survey, with additional demographic components, was administered to students at a major southwest university. This survey contained two questions, one each for continuing and beginning EAH, regarding 14 factors related to emotional, physical, or environmental reasons that may trigger EAH. The results from this study revealed that the continual and beginning EAH surveys displayed good internal consistency reliability. We found that for beginning and continuing EAH, although emotion is the strongest predictor of EAH, all three latent factors are significant predictors of EAH. In addition, we found that environmental factors had the greatest influence on an individual's likelihood to continue to eat in the absence of hunger. Due to statistical abnormalities and differing numbers of factors in each category, we were unable to determine which of the three factors exerted the greatest influence on an individual's likelihood to begin eating in the absence of hunger. These results can be utilized to develop educational tools aimed at reducing EAH in college students, and ultimately reducing the likelihood for unhealthy weight gain and health complications related to obesity.
ContributorsGoett, Taylor (Author) / Johnston, Carol (Thesis advisor) / Lee, Chong (Committee member) / Lespron, Christy (Committee member) / Arizona State University (Publisher)
Created2013
152260-Thumbnail Image.png
Description
Autonomous vehicle control systems utilize real-time kinematic Global Navigation Satellite Systems (GNSS) receivers to provide a position within two-centimeter of truth. GNSS receivers utilize the satellite signal time of arrival estimates to solve for position; and multipath corrupts the time of arrival estimates with a time-varying bias. Time of arrival

Autonomous vehicle control systems utilize real-time kinematic Global Navigation Satellite Systems (GNSS) receivers to provide a position within two-centimeter of truth. GNSS receivers utilize the satellite signal time of arrival estimates to solve for position; and multipath corrupts the time of arrival estimates with a time-varying bias. Time of arrival estimates are based upon accurate direct sequence spread spectrum (DSSS) code and carrier phase tracking. Current multipath mitigating GNSS solutions include fixed radiation pattern antennas and windowed delay-lock loop code phase discriminators. A new multipath mitigating code tracking algorithm is introduced that utilizes a non-symmetric correlation kernel to reject multipath. Independent parameters provide a means to trade-off code tracking discriminant gain against multipath mitigation performance. The algorithm performance is characterized in terms of multipath phase error bias, phase error estimation variance, tracking range, tracking ambiguity and implementation complexity. The algorithm is suitable for modernized GNSS signals including Binary Phase Shift Keyed (BPSK) and a variety of Binary Offset Keyed (BOC) signals. The algorithm compensates for unbalanced code sequences to ensure a code tracking bias does not result from the use of asymmetric correlation kernels. The algorithm does not require explicit knowledge of the propagation channel model. Design recommendations for selecting the algorithm parameters to mitigate precorrelation filter distortion are also provided.
ContributorsMiller, Steven (Author) / Spanias, Andreas (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Tsakalis, Konstantinos (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2013
151861-Thumbnail Image.png
Description
In October, 2009, participants of the Arizona Special Supplemental Nutrition Program for Women, Infants and Children (WIC) began receiving monthly Cash Value Vouchers (CVV) worth between six and 10 dollars towards the purchase of fresh fruits and vegetables. Data from the Arizona Department of Health Services (ADHS) showed CVV redemption

In October, 2009, participants of the Arizona Special Supplemental Nutrition Program for Women, Infants and Children (WIC) began receiving monthly Cash Value Vouchers (CVV) worth between six and 10 dollars towards the purchase of fresh fruits and vegetables. Data from the Arizona Department of Health Services (ADHS) showed CVV redemption rates in the first two years of the program were lower than the national average of 77% redemption. In response, the ADHS WIC Food List was expanded to also include canned and frozen fruits and vegetables. More recent data from ADHS suggest that redemption rates are improving, but variably exist among different WIC sub-populations. The purpose of this project was to identify themes related to the ease or difficulty of WIC CVV use amongst different categories of low-redeeming WIC participants. A total of 8 focus groups were conducted, four at a clinic in each of two Valley cities: Surprise and Mesa. Each of the four focus groups comprised one of four targeted WIC participant categories: pregnant, postpartum, breastfeeding, and children with participation ranging from 3-9 participants per group. Using the general inductive approach, recordings of the focus groups were transcribed, hand-coded and uploaded into qualitative analysis software resulting in four emergent themes including: interactions and shopping strategies, maximizing WIC value, redemption issues, and effect of rule change. Researchers identified twelve different subthemes related to the emergent theme of interactions and strategies to improve their experience, including economic considerations during redemption. Barriers related to interactions existed that made their purchase difficult, most notably anger from the cashier and other shoppers. However, participants made use of a number of strategies to facilitate WIC purchases or extract more value out of WIC benefits, such as pooling their CVV. Finally, it appears that the fruit and vegetable rule change was well received by those who were aware of the change. These data suggest a number of important avenues for future research, including verifying these themes are important within a larger, representative sample of Arizona WIC participants, and exploring strategies to minimize barriers identified by participants, such as use of electronic benefits transfer-style cards (EBT).
ContributorsBertmann, Farryl M. W (Author) / Wharton, Christopher (Christopher Mack), 1977- (Thesis advisor) / Ohri-Vachaspati, Punam (Committee member) / Johnston, Carol (Committee member) / Hampl, Jeffrey (Committee member) / Dixit-Joshi, Sujata (Committee member) / Barroso, Cristina (Committee member) / Arizona State University (Publisher)
Created2013
151953-Thumbnail Image.png
Description
Distributed inference has applications in a wide range of fields such as source localization, target detection, environment monitoring, and healthcare. In this dissertation, distributed inference schemes which use bounded transmit power are considered. The performance of the proposed schemes are studied for a variety of inference problems. In the first

Distributed inference has applications in a wide range of fields such as source localization, target detection, environment monitoring, and healthcare. In this dissertation, distributed inference schemes which use bounded transmit power are considered. The performance of the proposed schemes are studied for a variety of inference problems. In the first part of the dissertation, a distributed detection scheme where the sensors transmit with constant modulus signals over a Gaussian multiple access channel is considered. The deflection coefficient of the proposed scheme is shown to depend on the characteristic function of the sensing noise, and the error exponent for the system is derived using large deviation theory. Optimization of the deflection coefficient and error exponent are considered with respect to a transmission phase parameter for a variety of sensing noise distributions including impulsive ones. The proposed scheme is also favorably compared with existing amplify-and-forward (AF) and detect-and-forward (DF) schemes. The effect of fading is shown to be detrimental to the detection performance and simulations are provided to corroborate the analytical results. The second part of the dissertation studies a distributed inference scheme which uses bounded transmission functions over a Gaussian multiple access channel. The conditions on the transmission functions under which consistent estimation and reliable detection are possible is characterized. For the distributed estimation problem, an estimation scheme that uses bounded transmission functions is proved to be strongly consistent provided that the variance of the noise samples are bounded and that the transmission function is one-to-one. The proposed estimation scheme is compared with the amplify and forward technique and its robustness to impulsive sensing noise distributions is highlighted. It is also shown that bounded transmissions suffer from inconsistent estimates if the sensing noise variance goes to infinity. For the distributed detection problem, similar results are obtained by studying the deflection coefficient. Simulations corroborate our analytical results. In the third part of this dissertation, the problem of estimating the average of samples distributed at the nodes of a sensor network is considered. A distributed average consensus algorithm in which every sensor transmits with bounded peak power is proposed. In the presence of communication noise, it is shown that the nodes reach consensus asymptotically to a finite random variable whose expectation is the desired sample average of the initial observations with a variance that depends on the step size of the algorithm and the variance of the communication noise. The asymptotic performance is characterized by deriving the asymptotic covariance matrix using results from stochastic approximation theory. It is shown that using bounded transmissions results in slower convergence compared to the linear consensus algorithm based on the Laplacian heuristic. Simulations corroborate our analytical findings. Finally, a robust distributed average consensus algorithm in which every sensor performs a nonlinear processing at the receiver is proposed. It is shown that non-linearity at the receiver nodes makes the algorithm robust to a wide range of channel noise distributions including the impulsive ones. It is shown that the nodes reach consensus asymptotically and similar results are obtained as in the case of transmit non-linearity. Simulations corroborate our analytical findings and highlight the robustness of the proposed algorithm.
ContributorsDasarathan, Sivaraman (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Reisslein, Martin (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2013
151772-Thumbnail Image.png
Description
Ingestion of high temperature mainstream gas into the rotor-stator cavities of a gas turbine is one of the major problems faced by the turbine designers. The ingested gas heats up rotor disks and induces higher thermal stresses on them, giving rise to durability concern. Ingestion is usually reduced by installing

Ingestion of high temperature mainstream gas into the rotor-stator cavities of a gas turbine is one of the major problems faced by the turbine designers. The ingested gas heats up rotor disks and induces higher thermal stresses on them, giving rise to durability concern. Ingestion is usually reduced by installing seals on the rotor and stator rims and by purging the disk cavity by secondary air bled from the compressor discharge. The geometry of the rim seals and the secondary air flow rate, together, influence the amount of gas that gets ingested into the cavities. Since the amount of secondary air bled off has a negative effect on the gas turbine thermal efficiency, one goal is to use the least possible amount of secondary air. This requires a good understanding of the flow and ingestion fields within a disk cavity. In the present study, the mainstream gas ingestion phenomenon has been experimentally studied in a model single-stage axial flow gas turbine. The turbine stage featured vanes and blades, and rim seals on both the rotor and stator. Additionally, the disk cavity contained a labyrinth seal radially inboard which effectively divided the cavity into a rim cavity and an inner cavity. Time-average static pressure measurements were obtained at various radial positions within the disk cavity, and in the mainstream gas path at three axial locations at the outer shroud spread circumferentially over two vane pitches. The time-average static pressure in the main gas path exhibited a periodic asymmetry following the vane pitch whose amplitude diminished with increasing distance from the vane trailing edge. The static pressure distribution increased with the secondary air flow rate within the inner cavity but was found to be almost independent of it in the rim cavity. Tracer gas (CO2) concentration measurements were conducted to determine the sealing effectiveness of the rim seals against main gas ingestion. For the rim cavity, the sealing effectiveness increased with the secondary air flow rate. Within the inner cavity however, this trend reversed -this may have been due to the presence of rotating low-pressure flow structures inboard of the labyrinth seal.
ContributorsThiagarajan, Jayanth kumar (Author) / Roy, Ramendra P (Thesis advisor) / Lee, Taewoo (Committee member) / Mignolet, Marc (Committee member) / Arizona State University (Publisher)
Created2013
151815-Thumbnail Image.png
Description
The field of education has been immensely benefited by major breakthroughs in technology. The arrival of computers and the internet made student-teacher interaction from different parts of the world viable, increasing the reach of the educator to hitherto remote corners of the world. The arrival of mobile phones in the

The field of education has been immensely benefited by major breakthroughs in technology. The arrival of computers and the internet made student-teacher interaction from different parts of the world viable, increasing the reach of the educator to hitherto remote corners of the world. The arrival of mobile phones in the recent past has the potential to provide the next paradigm shift in the way education is conducted. It combines the universal reach and powerful visualization capabilities of the computer with intimacy and portability. Engineering education is a field which can exploit the benefits of mobile devices to enhance learning and spread essential technical know-how to different parts of the world. In this thesis, I present AJDSP, an Android application evolved from JDSP, providing an intuitive and a easy to use environment for signal processing education. AJDSP is a graphical programming laboratory for digital signal processing developed for the Android platform. It is designed to provide utility; both as a supplement to traditional classroom learning and as a tool for self-learning. The architecture of AJDSP is based on the Model-View-Controller paradigm optimized for the Android platform. The extensive set of function modules cover a wide range of basic signal processing areas such as convolution, fast Fourier transform, z transform and filter design. The simple and intuitive user interface inspired from iJDSP is designed to facilitate ease of navigation and to provide the user with an intimate learning environment. Rich visualizations necessary to understand mathematically intensive signal processing algorithms have been incorporated into the software. Interactive demonstrations boosting student understanding of concepts like convolution and the relation between different signal domains have also been developed. A set of detailed assessments to evaluate the application has been conducted for graduate and senior-level undergraduate students.
ContributorsRanganath, Suhas (Author) / Spanias, Andreas (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2013
151655-Thumbnail Image.png
Description
There are several visual dimensions of food that can affect food intake, example portion size, color, and variety. This dissertation elucidates the effect of number of pieces of food on preference and amount of food consumed in humans and motivation for food in animals. Chapter 2 Experiment 1 showed that

There are several visual dimensions of food that can affect food intake, example portion size, color, and variety. This dissertation elucidates the effect of number of pieces of food on preference and amount of food consumed in humans and motivation for food in animals. Chapter 2 Experiment 1 showed that rats preferred and also ran faster for multiple pieces (30, 10 mg pellets) than an equicaloric, single piece of food (300 mg) showing that multiple pieces of food are more rewarding than a single piece. Chapter 2 Experiment 2 showed that rats preferred a 30-pellet food portion clustered together rather than scattered. Preference and motivation for clustered food pieces may be interpreted based on the optimal foraging theory that animals prefer foods that can maximize energy gain and minimize the risk of predation. Chapter 3 Experiment 1 showed that college students preferred and ate less of a multiple-piece than a single-piece portion and also ate less in a test meal following the multiple-piece than single-piece portion. Chapter 3 Experiment 2 replicated the results in Experiment 1 and used a bagel instead of chicken. Chapter 4 showed that college students given a five-piece chicken portion scattered on a plate ate less in a meal and in a subsequent test meal than those given the same portion clustered together. This is consistent with the hypothesis that multiple pieces of food may appear like more food because they take up a larger surface area than a single-piece portion. All together, these studies show that number and surface area occupied by food pieces are important visual cues determining food choice in animals and both food choice and intake in humans.
ContributorsBajaj, Devina (Author) / Phillips, Elizabeth D. (Thesis advisor) / Cohen, Adam (Committee member) / Johnston, Carol (Committee member) / Bimonte-Nelson, Heather A. (Committee member) / Arizona State University (Publisher)
Created2013