Matching Items (16)
153994-Thumbnail Image.png
Description
GaAs single-junction solar cells have been studied extensively in recent years, and have reached over 28 % efficiency. Further improvement requires an optically thick but physically thin absorber to provide both large short-circuit current and high open-circuit voltage. By detailed simulation, it is concluded that ultra-thin GaAs cells with hundreds

GaAs single-junction solar cells have been studied extensively in recent years, and have reached over 28 % efficiency. Further improvement requires an optically thick but physically thin absorber to provide both large short-circuit current and high open-circuit voltage. By detailed simulation, it is concluded that ultra-thin GaAs cells with hundreds of nanometers thickness and reflective back scattering can potentially offer efficiencies greater than 30 %. The 300 nm GaAs solar cell with AlInP/Au reflective back scattering is carefully designed and demonstrates an efficiency of 19.1 %. The device performance is analyzed using the semi-analytical model with Phong distribution implemented to account for non-Lambertian scattering. A Phong exponent m of ~12, a non-radiative lifetime of 130 ns, and a specific series resistivity of 1.2 Ω·cm2 are determined.

Thin-film CdTe solar cells have also attracted lots of attention due to the continuous improvements in their device performance. To address the issue of the lower efficiency record compared to detailed-balance limit, the single-crystalline Cd(Zn)Te/MgCdTe double heterostructures (DH) grown on InSb (100) substrates by molecular beam epitaxy (MBE) are carefully studied. The Cd0.9946Zn0.0054Te alloy lattice-matched to InSb has been demonstrated with a carrier lifetime of 0.34 µs observed in a 3 µm thick Cd0.9946Zn0.0054Te/MgCdTe DH sample. The substantial improvement of lifetime is due to the reduction in misfit dislocation density. The recombination lifetime and interface recombination velocity (IRV) of CdTe/MgxCd1-xTe DHs are investigated. The IRV is found to be dependent on both the MgCdTe barrier height and width due to the thermionic emission and tunneling processes. A record-long carrier lifetime of 2.7 µs and a record-low IRV of close to zero have been confirmed experimentally.

The MgCdTe/Si tandem solar cell is proposed to address the issue of high manufacturing costs and poor performance of thin-film solar cells. The MBE grown MgxCd1-xTe/MgyCd1-yTe DHs have demonstrated the required bandgap energy of 1.7 eV, a carrier lifetime of 11 ns, and an effective IRV of (1.869 ± 0.007) × 103 cm/s. The large IRV is attributed to thermionic-emission induced interface recombination. These understandings can be applied to fabricating the high-efficiency low-cost MgCdTe/Si tandem solar cell.
ContributorsLiu, Shi (Author) / Zhang, Yong-Hang (Thesis advisor) / Johnson, Shane R (Committee member) / Vasileska, Dragica (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2015
157257-Thumbnail Image.png
Description
Compound semiconductors tend to be more ionic if the cations and anions are further apart in atomic columns, such as II-VI compared to III-V compounds, due in part to the greater electronegativity difference between group-II and group-VI atoms. As the electronegativity between the atoms increases, the materials tend to have

Compound semiconductors tend to be more ionic if the cations and anions are further apart in atomic columns, such as II-VI compared to III-V compounds, due in part to the greater electronegativity difference between group-II and group-VI atoms. As the electronegativity between the atoms increases, the materials tend to have more insulator-like properties, including higher energy band gaps and lower indices of refraction. This enables significant differences in the optical and electronic properties between III-V, II-VI, and IV-VI semiconductors. Many of these binary compounds have similar lattice constants and therefore can be grown epitaxially on top of each other to create monolithic heterovalent and heterocrystalline heterostructures with optical and electronic properties unachievable in conventional isovalent heterostructures.

Due to the difference in vapor pressures and ideal growth temperatures between the different materials, precise growth methods are required to optimize the structural and optical properties of the heterovalent heterostructures. The high growth temperatures of the III-V materials can damage the II-VI barrier layers, and therefore a compromise must be found for the growth of high-quality III-V and II-VI layers in the same heterostructure. In addition, precise control of the interface termination has been shown to play a significant role in the crystal quality of the different layers in the structure. For non-polar orientations, elemental fluxes of group-II and group-V atoms consistently help to lower the stacking fault and dislocation density in the II-VI/III-V heterovalent heterostructures.

This dissertation examines the epitaxial growth of heterovalent and heterocrystalline heterostructures lattice-matched to GaAs, GaSb, and InSb substrates in a single-chamber growth system. The optimal growth conditions to achieve alternating layers of III-V, II-VI, and IV-VI semiconductors have been investigated using temperature ramps, migration-enhanced epitaxy, and elemental fluxes at the interface. GaSb/ZnTe distributed Bragg reflectors grown in this study significantly outperform similar isovalent GaSb-based reflectors and show great promise for mid-infrared applications. Also, carrier confinement in GaAs/ZnSe quantum wells was achieved with a low-temperature growth technique for GaAs on ZnSe. Additionally, nearly lattice-matched heterocrystalline PbTe/CdTe/InSb heterostructures with strong infrared photoluminescence were demonstrated, along with virtual (211) CdZnTe/InSb substrates with extremely low defect densities for long-wavelength optoelectronic applications.
ContributorsLassise, Maxwell Brock (Author) / Zhang, Yong-Hang (Thesis advisor) / Smith, David J. (Committee member) / Johnson, Shane R (Committee member) / Mccartney, Martha R (Committee member) / Arizona State University (Publisher)
Created2019
154755-Thumbnail Image.png
Description
High-performance III-V semiconductors based on ternary alloys and superlattice systems are fabricated, studied, and compared for infrared optoelectronic applications. InAsBi is a ternary alloy near the GaSb lattice constant that is not as thoroughly investigated as other III-V alloys and that is challenging to produce as Bi has a

High-performance III-V semiconductors based on ternary alloys and superlattice systems are fabricated, studied, and compared for infrared optoelectronic applications. InAsBi is a ternary alloy near the GaSb lattice constant that is not as thoroughly investigated as other III-V alloys and that is challenging to produce as Bi has a tendency to surface segregate and form droplets during growth rather than incorporate. A growth window is identified within which high-quality droplet-free bulk InAsBi is produced and Bi mole fractions up to 6.4% are obtained. Photoluminescence with high internal quantum efficiency is observed from InAs/InAsBi quantum wells. The high structural and optical quality of the InAsBi materials examined demonstrates that bulk, quantum well, and superlattice structures utilizing InAsBi are an important design option for efficient infrared coverage.

Another important infrared material system is InAsSb and the strain-balanced InAs/InAsSb superlattice on GaSb. Detailed examination of X-ray diffraction, photoluminescence, and spectroscopic ellipsometry data provides the temperature and composition dependent bandgap of bulk InAsSb. The unintentional incorporation of approximately 1% Sb into the InAs layers of the superlattice is measured and found to significantly impact the analysis of the InAs/InAsSb band alignment. In the analysis of the absorption spectra, the ground state absorption coefficient and transition strength of the superlattice are proportional to the square of the electron-hole wavefunction overlap; wavefunction overlap is therefore a major design parameter in terms of optimizing absorption in these materials. Furthermore in addition to improvements through design optimization, the optical quality of the materials studied is found to be positively enhanced with the use of Bi as a surfactant during molecular beam epitaxy growth.

A software tool is developed that calculates and optimizes the miniband structure of semiconductor superlattices, including bismide-based designs. The software has the capability to limit results to designs that can be produced with high structural and optical quality, and optimized designs in terms of maximizing absorption are identified for several infrared superlattice systems at the GaSb lattice constant. The accuracy of the software predictions are tested with the design and growth of an optimized mid-wave infrared InAs/InAsSb superlattice which exhibits superior optical and absorption properties.
ContributorsWebster, Preston Thomas (Author) / Johnson, Shane R (Thesis advisor) / Zhang, Yong-Hang (Committee member) / Menéndez, Jose (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2016
154865-Thumbnail Image.png
Description
InAsBi is a narrow direct gap III-V semiconductor that has recently attracted considerable attention because its bandgap is tunable over a wide range of mid- and long-wave infrared wavelengths for optoelectronic applications. Furthermore, InAsBi can be integrated with other III-V materials and is potentially an alternative to commercial II-VI

InAsBi is a narrow direct gap III-V semiconductor that has recently attracted considerable attention because its bandgap is tunable over a wide range of mid- and long-wave infrared wavelengths for optoelectronic applications. Furthermore, InAsBi can be integrated with other III-V materials and is potentially an alternative to commercial II-VI photodetector materials such as HgCdTe.

Several 1 μm thick, nearly lattice-matched InAsBi layers grown on GaSb are examined using Rutherford backscattering spectrometry and X-ray diffraction. Random Rutherford backscattering measurements indicate that the average Bi mole fraction ranges from 0.0503 to 0.0645 for the sample set, and ion channeling measurements indicate that the Bi atoms are substitutional. The X-ray diffraction measurements show a diffraction sideband near the main (004) diffraction peak, indicating that the Bi mole fraction is not laterally uniform in the layer. The average out of plane tetragonal distortion is determined by modeling the main and sideband diffraction peaks, from which the average unstrained lattice constant of each sample is determined. By comparing the Bi mole fraction measured by random Rutherford backscattering with the InAsBi lattice constant for the sample set, the lattice constant of zinc blende InBi is determined to be 6.6107 Å.

Several InAsBi quantum wells tensilely strained to the GaSb lattice constant with dilute quantities of Bi are characterized using photoluminescence spectroscopy. Investigation of the integrated intensity as a function of carrier excitation density spanning 5×1025 to 5×1026 cm-3 s-1 indicates radiative dominated recombination and high quantum efficiency over the 12 to 250 K temperature range. The bandgap of InAsBi is ascertained from the photoluminescence spectra and parameterized as a function of temperature using the Einstein single oscillator model. The dilute Bi mole fraction of the InAsBi quantum wells is determined by comparing the measured bandgap energy to that predicted by the valence band anticrossing model. The Bi mole fraction determined by photoluminescence agrees reasonably well with that estimated using secondary ion mass spectrometry.
ContributorsShalindar Christraj, Arvind Joshua Jaydev (Author) / Johnson, Shane R (Thesis advisor) / Alford, Terry L. (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2016
130236-Thumbnail Image.png
ContributorsKim, H. S. (Author) / Cellek, O. O. (Author) / Lin, Zhi-Yuan (Author) / He, Zhao-Yu (Author) / Zhao, Xin-Hao (Author) / Liu, Shi (Author) / Li, Hua (Author) / Zhang, Yong-Hang (Author)
Created2012