Matching Items (82)
151742-Thumbnail Image.png
Description
This research is focused on two separate but related topics. The first uses an electroencephalographic (EEG) brain-computer interface (BCI) to explore the phenomenon of motor learning transfer. The second takes a closer look at the EEG-BCI itself and tests an alternate way of mapping EEG signals into machine commands. We

This research is focused on two separate but related topics. The first uses an electroencephalographic (EEG) brain-computer interface (BCI) to explore the phenomenon of motor learning transfer. The second takes a closer look at the EEG-BCI itself and tests an alternate way of mapping EEG signals into machine commands. We test whether motor learning transfer is more related to use of shared neural structures between imagery and motor execution or to more generalized cognitive factors. Using an EEG-BCI, we train one group of participants to control the movements of a cursor using embodied motor imagery. A second group is trained to control the cursor using abstract motor imagery. A third control group practices moving the cursor using an arm and finger on a touch screen. We hypothesized that if motor learning transfer is related to the use of shared neural structures then the embodied motor imagery group would show more learning transfer than the abstract imaging group. If, on the other hand, motor learning transfer results from more general cognitive processes, then the abstract motor imagery group should also demonstrate motor learning transfer to the manual performance of the same task. Our findings support that motor learning transfer is due to the use of shared neural structures between imaging and motor execution of a task. The abstract group showed no motor learning transfer despite being better at EEG-BCI control than the embodied group. The fact that more participants were able to learn EEG-BCI control using abstract imagery suggests that abstract imagery may be more suitable for EEG-BCIs for some disabilities, while embodied imagery may be more suitable for others. In Part 2, EEG data collected in the above experiment was used to train an artificial neural network (ANN) to map EEG signals to machine commands. We found that our open-source ANN using spectrograms generated from SFFTs is fundamentally different and in some ways superior to Emotiv's proprietary method. Our use of novel combinations of existing technologies along with abstract and embodied imagery facilitates adaptive customization of EEG-BCI control to meet needs of individual users.
Contributorsda Silva, Flavio J. K (Author) / Mcbeath, Michael K (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Presson, Clark (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2013
152951-Thumbnail Image.png
Description
Although research has documented robust prospective relationships between externalizing symptomatology and subsequent binge drinking among adolescents, the extent to which internalizing symptoms increase risk for drinking remains controversial. In particular, the role of anxiety as a predictor of binge drinking remains unclear. Recent evidence suggests that one possible reason for

Although research has documented robust prospective relationships between externalizing symptomatology and subsequent binge drinking among adolescents, the extent to which internalizing symptoms increase risk for drinking remains controversial. In particular, the role of anxiety as a predictor of binge drinking remains unclear. Recent evidence suggests that one possible reason for these mixed findings is that separate dimensions of anxiety may differentially confer risk for alcohol use. The present study tested two dimensions of anxiety - worry and physiological anxiety -- as predictors of binge drinking in a longitudinal study of juvenile delinquents. Overall, results indicate that worry and physiological anxiety showed differential relations with drinking behavior. In general, worry was protective against alcohol use, whereas physiological anxiety conferred risk for binge drinking, but both effects were conditional on levels of offending. Implications for future research examining the role of anxiety in predicting drinking behavior among youth are discussed.
ContributorsNichter, Brandon (Author) / Chassin, Laurie (Thesis advisor) / Barrera, Manuel (Committee member) / Presson, Clark (Committee member) / Arizona State University (Publisher)
Created2014
150207-Thumbnail Image.png
Description
Fibromyalgia (FM) is a chronic musculoskeletal disorder characterized by widespread pain, fatigue, and a variety of other comorbid physiological and psychological characteristics, including a deficit of positive affect. Recently, the focus of research on the pathophysiology of FM has considered the role of a number of genomic variants. In the

Fibromyalgia (FM) is a chronic musculoskeletal disorder characterized by widespread pain, fatigue, and a variety of other comorbid physiological and psychological characteristics, including a deficit of positive affect. Recently, the focus of research on the pathophysiology of FM has considered the role of a number of genomic variants. In the current manuscript, case-control analyses did not support the hypothesis that FM patients would differ from other chronic pain groups in catechol-O-methyltransferase (COMT) and mu-opioid receptor (OPRM1) genotype. However, evidence is provided in support of the hypothesis that functional single nucleotide polymorphisms on the COMT and OPRM1 genes would be associated with risk and resilience, respectively, in a dual processing model of pain-related positive affective regulation in FM. Forty-six female patients with a physician-confirmed diagnosis of FM completed an electronic diary that included once-daily assessments of positive affect and soft tissue pain. Multilevel modeling yielded a significant gene X environment interaction, such that individuals with met/met genotype on COMT experienced a greater decline in positive affect as daily pain increased than did either val/met or val/val individuals. A gene X environment interaction for OPRM1 also emerged, indicating that individuals with at least one asp allele were more resilient to elevations in daily pain than those homozygous for the asn allele. In sum, the findings offer researchers ample reason to further investigate the contribution of the catecholamine and opioid systems, and their associated genomic variants, to the still poorly understood experience of FM.
ContributorsFinan, Patrick Hamilton (Author) / Zautra, Alex (Thesis advisor) / Davis, Mary (Committee member) / Lemery-Chalfant, Kathryn (Committee member) / Presson, Clark (Committee member) / Arizona State University (Publisher)
Created2011
149755-Thumbnail Image.png
Description
When people pick up the phone to call a telephone quitline, they are taking an important step towards changing their smoking behavior. The current study investigated the role of a critical cognition in the cessation process--self-efficacy. Self-efficacy is thought to be influential in behavior change processes including those involved in

When people pick up the phone to call a telephone quitline, they are taking an important step towards changing their smoking behavior. The current study investigated the role of a critical cognition in the cessation process--self-efficacy. Self-efficacy is thought to be influential in behavior change processes including those involved in the challenging process of stopping tobacco use. By applying basic principles of self-efficacy theory to smokers utilizing a telephone quitline, this study advanced our understanding of the nature of self-efficacy in a "real-world" cessation setting. Participants received between one and four intervention calls aimed at supporting them through their quit attempt. Concurrent with the initiation of this study, three items (confidence, stress, and urges) were added to the standard telephone protocol and assessed at each call. Two principal sets of hypotheses were tested using a combination of ANCOVAs and multiple regression analyses. The first set of hypotheses explored how self-efficacy and changes in self-efficacy within individuals were associated with cessation outcomes. Most research has found a positive linear relation between self-efficacy and quit outcomes, but this study tested the possibility that excessively high self-efficacy may actually reflect an overconfidence bias, and in some cases be negatively related to cessation outcomes. The second set of hypotheses addressed several smoking-related factors expected to affect self-efficacy. As predicted, higher baseline self-efficacy and increases in self-efficacy were associated with higher rates of quitting. However, contrary to predictions, there was no evidence that overconfidence led to diminished cessation success. Finally, as predicted, shorter duration of quit attempts, shorter time to relapse, and stronger urges all were associated with lower self-efficacy. In conclusion, understanding how self-efficacy and changes in self-efficacy affect and are affected by cessation outcomes is useful for informing both future research and current quitline intervention procedures.
ContributorsGoesling, Jenna (Author) / Barrera, Manuel (Thesis advisor) / Shiota, Lani (Committee member) / Enders, Craig (Committee member) / Presson, Clark (Committee member) / Arizona State University (Publisher)
Created2011
156318-Thumbnail Image.png
Description
VTOL drones were designed and built at the beginning of the 20th century for military applications due to easy take-off and landing operations. Many companies like Lockheed, Convair, NASA and Bell Labs built their own aircrafts but only a few from them came in to the market. Usually, flight automation

VTOL drones were designed and built at the beginning of the 20th century for military applications due to easy take-off and landing operations. Many companies like Lockheed, Convair, NASA and Bell Labs built their own aircrafts but only a few from them came in to the market. Usually, flight automation starts from first principles modeling which helps in the controller design and dynamic analysis of the system.

In this project, a VTOL drone with a shape similar to a Convair XFY-1 is studied and the primary focus is stabilizing and controlling the flight path of the drone in
its hover and horizontal flying modes. The model of the plane is obtained using first principles modeling and controllers are designed to stabilize the yaw, pitch and roll rotational motions.

The plane is modeled for its yaw, pitch and roll rotational motions. Subsequently, the rotational dynamics of the system are linearized about the hover flying mode, hover to horizontal flying mode, horizontal flying mode, horizontal to hover flying mode for ease of implementation of linear control design techniques. The controllers are designed based on an H∞ loop shaping procedure and the results are verified on the actual nonlinear model for the stability of the closed loop system about hover flying, hover to horizontal transition flying, horizontal flying, horizontal to hover transition flying. An experiment is conducted to study the dynamics of the motor by recording the PWM input to the electronic speed controller as input and the rotational speed of the motor as output. A theoretical study is also done to study the thrust generated by the propellers for lift, slipstream velocity analysis, torques acting on the system for various thrust profiles.
ContributorsRAGHURAMAN, VIGNESH (Author) / Tsakalis, Konstantinos (Thesis advisor) / Rodriguez, Armando (Committee member) / Yong, Sze Zheng (Committee member) / Arizona State University (Publisher)
Created2018
157454-Thumbnail Image.png
Description
The Autonomous Vehicle (AV), also known as self-driving car, promises to be a game changer for the transportation industry. This technology is predicted to drastically reduce the number of traffic fatalities due to human error [21].

However, road driving at any reasonable speed involves some risks. Therefore, even with high-tech

The Autonomous Vehicle (AV), also known as self-driving car, promises to be a game changer for the transportation industry. This technology is predicted to drastically reduce the number of traffic fatalities due to human error [21].

However, road driving at any reasonable speed involves some risks. Therefore, even with high-tech AV algorithms and sophisticated sensors, there may be unavoidable crashes due to imperfection of the AV systems, or unexpected encounters with wildlife, children and pedestrians. Whenever there is a risk involved, there is the need for an ethical decision to be made [33].

While ethical and moral decision-making in humans has long been studied by experts, the advent of artificial intelligence (AI) also calls for machine ethics. To study the different moral and ethical decisions made by humans, experts may use the Trolley Problem [34], which is a scenario where one must pull a switch near a trolley track to redirect the trolley to kill one person on the track or do nothing, which will result in the deaths of five people. While it is important to take into account the input of members of a society and perform studies to understand how humans crash during unavoidable accidents to help program moral and ethical decision-making into self-driving cars, using the classical trolley problem is not ideal, as it is unrealistic and does not represent moral situations that people face in the real world.

This work seeks to increase the realism of the classical trolley problem for use in studies on moral and ethical decision-making by simulating realistic driving conditions in an immersive virtual environment with unavoidable crash scenarios, to investigate how drivers crash during these scenarios. Chapter 1 gives an in-depth background into autonomous vehicles and relevant ethical and moral problems; Chapter 2 describes current state-of-the-art online tools and simulators that were developed to study moral decision-making during unavoidable crashes. Chapters 3 focuses on building the simulator and the design of the crash scenarios. Chapter 4 describes human subjects experiments that were conducted with the simulator and their results, and Chapter 5 provides conclusions and avenues for future work.
ContributorsKankam, Immanuella (Author) / Berman, Spring (Thesis advisor) / Johnson, Kathryn (Committee member) / Yong, Sze Zheng (Committee member) / Arizona State University (Publisher)
Created2019
157457-Thumbnail Image.png
Description
The construction industry is very mundane and tiring for workers without the assistance of machines. This challenge has changed the trend of construction industry tremendously by motivating the development of robots that can replace human workers. This thesis presents a computed torque controller that is designed to produce movements by

The construction industry is very mundane and tiring for workers without the assistance of machines. This challenge has changed the trend of construction industry tremendously by motivating the development of robots that can replace human workers. This thesis presents a computed torque controller that is designed to produce movements by a small-scale, 5 degree-of-freedom (DOF) robotic arm that are useful for construction operations, specifically bricklaying. A software framework for the robotic arm with motion and path planning features and different control capabilities has also been developed using the Robot Operating System (ROS).

First, a literature review of bricklaying construction activity and existing robots’ performance is discussed. After describing an overview of the required robot structure, a mathematical model is presented for the 5-DOF robotic arm. A model-based computed torque controller is designed for the nonlinear dynamic robotic arm, taking into consideration the dynamic and kinematic properties of the arm. For sustainable growth of this technology so that it is affordable to the masses, it is important that the energy consumption by the robot is optimized. In this thesis, the trajectory of the robotic arm is optimized using sequential quadratic programming. The results of the energy optimization procedure are also analyzed for different possible trajectories.

A construction testbed setup is simulated in the ROS platform to validate the designed controllers and optimized robot trajectories on different experimental scenarios. A commercially available 5-DOF robotic arm is modeled in the ROS simulators Gazebo and Rviz. The path and motion planning is performed using the Moveit-ROS interface and also implemented on a physical small-scale robotic arm. A Matlab-ROS framework for execution of different controllers on the physical robot is described. Finally, the results of the controller simulation and experiments are discussed in detail.
ContributorsGandhi, Sushrut (Author) / Berman, Spring (Thesis advisor) / Marvi, Hamidreza (Committee member) / Yong, Sze Zheng (Committee member) / Arizona State University (Publisher)
Created2019
156496-Thumbnail Image.png
Description
Soft Poly-Limb (SPL) is a pneumatically driven, wearable, soft continuum robotic arm designed to aid humans with medical conditions, such as cerebral palsy, paraplegia, cervical spondylotic myelopathy, perform activities of daily living. To support user's tasks, the SPL acts as an additional limb extending from the human body which can

Soft Poly-Limb (SPL) is a pneumatically driven, wearable, soft continuum robotic arm designed to aid humans with medical conditions, such as cerebral palsy, paraplegia, cervical spondylotic myelopathy, perform activities of daily living. To support user's tasks, the SPL acts as an additional limb extending from the human body which can be controlled to perform safe and compliant mobile manipulation in three-dimensional space. The SPL is inspired by invertebrate limbs, such as the elephant trunk and the arms of the octopus. In this work, various geometrical and physical parameters of the SPL are identified, and behavior of the actuators that comprise it are studied by varying their parameters through novel quasi-static computational models. As a result, this study provides a set of engineering design rules to create soft actuators for continuum soft robotic arms by understanding how varying parameters affect the actuator's motion as a function of the input pressure. A prototype of the SPL is fabricated to analyze the accuracy of these computational models by performing linear expansion, bending and arbitrary pose tests. Furthermore, combinations of the parameters based on the application of the SPL are determined to affect the weight, payload capacity, and stiffness of the arm. Experimental results demonstrate the accuracy of the proposed computational models and help in understanding the behavior of soft compliant actuators. Finally, based on the set functional requirements for the assistance of impaired users, results show the effectiveness of the SPL in performing tasks for activities of daily living.
ContributorsNuthi, Sai Gautham (Author) / Polygerinos, Panagiotis (Thesis advisor) / Lee, Hyunglae (Committee member) / Yong, Sze Zheng (Committee member) / Arizona State University (Publisher)
Created2018
156560-Thumbnail Image.png
Description
This work considers the design of separating input signals in order to discriminate among a finite number of uncertain nonlinear models. Each nonlinear model corresponds to a system operating mode, unobserved intents of other drivers or robots, or to fault types or attack strategies, etc., and the separating inputs are

This work considers the design of separating input signals in order to discriminate among a finite number of uncertain nonlinear models. Each nonlinear model corresponds to a system operating mode, unobserved intents of other drivers or robots, or to fault types or attack strategies, etc., and the separating inputs are designed such that the output trajectories of all the nonlinear models are guaranteed to be distinguishable from each other under any realization of uncertainties in the initial condition, model discrepancies or noise. I propose a two-step approach. First, using an optimization-based approach, we over-approximate nonlinear dynamics by uncertain affine models, as abstractions that preserve all its system behaviors such that any discrimination guarantees for the affine abstraction also hold for the original nonlinear system. Then, I propose a novel solution in the form of a mixed-integer linear program (MILP) to the active model discrimination problem for uncertain affine models, which includes the affine abstraction and thus, the nonlinear models. Finally, I demonstrate the effectiveness of our approach for identifying the intention of other vehicles in a highway lane changing scenario. For the abstraction, I explore two approaches. In the first approach, I construct the bounding planes using a Mixed-Integer Nonlinear Problem (MINLP) formulation of the given system with appropriately designed constraints. For the second approach, I solve a linear programming (LP) problem that over-approximates the nonlinear function at only the grid points of a mesh with a given resolution and then accounting for the entire domain via an appropriate correction term. To achieve a desired approximation accuracy, we also iteratively subdivide the domain into subregions. This method applies to nonlinear functions with different degrees of smoothness, including Lipschitz continuous functions, and improves on existing approaches by enabling the use of tighter bounds. Finally, we compare the effectiveness of this approach with the existing optimization-based methods in simulation and illustrate its applicability for estimator design.
ContributorsSingh, Kanishka Raj (Author) / Yong, Sze Zheng (Thesis advisor) / Artemiadis, Panagiotis (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2018
157220-Thumbnail Image.png
Description
There are a large group of amputees living in the country and the number of them is supposed to increase a lot in the following years. Among them, lower-limb amputees are the majority. In order to improve the locomotion of lower-limb amputees, many prostheses have been developed. Most commercially available

There are a large group of amputees living in the country and the number of them is supposed to increase a lot in the following years. Among them, lower-limb amputees are the majority. In order to improve the locomotion of lower-limb amputees, many prostheses have been developed. Most commercially available prostheses are passive. They can not actively provide pure torque as an intact human could do. Powered prostheses have been the focus during the past decades. Some advanced prostheses have been successful in walking on level ground as well as on inclined surface and climbing stairs. However, not much work has been done regarding walking on compliant surfaces. My preliminary studies on myoelectric signals of the lower limbs during walking showed that there exists difference in muscle activation when walking on compliant surfaces. However, the mapping of muscle activities to joint torques for a prosthesis that will be capable of providing the required control to walk on compliant surfaces is not straightforward. In order to explore the effects of surface compliance on leg joint torque, a dynamic model of the lower limb was built using Simscape. The simulated walker (android) was commanded to track the same kinematics data of intact human walking on solid surface. Multiple simulations were done while varying ground stiffness in order to see how the torque at the leg joints would change as a function of the ground compliance. The results of this study could be used for the control of powered prostheses for robust walking on compliant surfaces.
ContributorsWang, Junxin, 1989- (Author) / Artemiadis, Panagiotis (Thesis advisor) / Yong, Sze Zheng (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2019