Matching Items (2)

Filtering by

Clear all filters

136301-Thumbnail Image.png

Handling the Heat: Plasticity of an Arthropod Pest in Response to the Urban Heat Island

Description

In recent years, ecologists have begun to study the effects of urbanization on species diversity. While urban areas generally suffer decreased biodiversity, some species, termed “urban exploiters”, not only live

In recent years, ecologists have begun to study the effects of urbanization on species diversity. While urban areas generally suffer decreased biodiversity, some species, termed “urban exploiters”, not only live in the city but depend on urban resources to thrive. It is hypothesized that urban exploiters may succeed in part due to phenotypic plasticity, in which organisms rapidly adjust their physiology or behavior to adapt to novel environmental contexts. In the city, it may be adaptive to display thermal plasticity, as the urban heat island effect caused by concrete and asphalt infrastructure prevents cooling at night. In this study, we observed the decorated cricket Gryllodes sigillatus, an invasive urban exploiter found in metropolitan Phoenix, in two separate experiments. We hypothesized that heat tolerance and activity are both plastic traits in this species. In Experiment 1, we predicted that knock-down time, a measure of heat tolerance, would be negatively affected by acclimation to a laboratory environment. Our results suggest that heat tolerance is affected by recent thermal regimes and that laboratory acclimation decreases knock-down time. In Experiment 2, we predicted that activity would increase with temperature until a point of extreme heat, at which point activity would decline. Statistical analysis for the second experiment reveals that activity decreases at 33°C, a natural urban extreme. This suggests either that 33°C is a thermal limit to physiology or that G. sigillatus is able to alter its behavior to exploit local thermal heterogeneity.

Contributors

Created

Date Created
  • 2015-05

133771-Thumbnail Image.png

The Effects of Extreme Urban Heat on Behavioral Syndromes of Juvenile Black Widow Spiders, Latrodectus hesperus

Description

Urbanization rapidly alters the environment, leading to a decrease in biodiversity in urban areas. A challenge associated with urbanized areas is the increased heat caused by the urban heat island

Urbanization rapidly alters the environment, leading to a decrease in biodiversity in urban areas. A challenge associated with urbanized areas is the increased heat caused by the urban heat island effect. Heat may have an important impact on arthropods particularly due to their status as ectotherms. Animal behavior reveals how individuals interact with their environment. A behavioral syndrome describes consistent individual differences in behaviors that are correlated across different behavioral contexts or situations. Understanding the Western Black Widow's behavioral responses to the urban heat island effect has important implications for the control of a pest species. In this study, the relationship between rising urban temperatures and voracity, web-building, and cannibalism behaviors of juvenile Western Black Widows was examined. Spiders raised in the urban temperature treatment were predicted to have more aggressive behavioral syndromes, characterized by shorter latencies to forage, greater web-building activity, and shorter latencies to cannibalize as compared to spiders raised in rural or intermediate temperature treatments. A correlation between the latency to attack the first fly and second fly was found, however there were no other correlations evidencing a behavioral syndrome. Temperature was found to affect foraging, web-building, and cannibalism behaviors where spiders in urban areas demonstrated increased activity in all behavioral contexts. The possession of behavioral plasticity rather than a behavioral syndrome is likely what allows Black Widows to be successful urban pests.

Contributors

Agent

Created

Date Created
  • 2018-05