Matching Items (1)

129205-Thumbnail Image.png

Atomic layer deposition of crystalline SrHfO3 directly on Ge (001) for high-k dielectric applications

Description

The current work explores the crystalline perovskite oxide, strontium hafnate, as a potential high-k gate dielectric for Ge-based transistors. SrHfO3 (SHO) is grown directly on Ge by atomic layer deposition

The current work explores the crystalline perovskite oxide, strontium hafnate, as a potential high-k gate dielectric for Ge-based transistors. SrHfO3 (SHO) is grown directly on Ge by atomic layer deposition and becomes crystalline with epitaxial registry after post-deposition vacuum annealing at ∼700 °C for 5 min. The 2 × 1 reconstructed, clean Ge (001) surface is a necessary template to achieve crystalline films upon annealing. The SHO films exhibit excellent crystallinity, as shown by x-ray diffraction and transmission electron microscopy. The SHO films have favorable electronic properties for consideration as a high-k gate dielectric on Ge, with satisfactory band offsets (>2 eV), low leakage current (<10[superscript −5] A/cm[superscript 2] at an applied field of 1 MV/cm) at an equivalent oxide thickness of 1 nm, and a reasonable dielectric constant (k ∼ 18). The interface trap density (Dit ) is estimated to be as low as ∼2 × 10[superscript 12] cm[superscript −2] eV[superscript −1] under the current growth and anneal conditions. Some interfacial reaction is observed between SHO and Ge at temperatures above ∼650 °C, which may contribute to increased Dit value. This study confirms the potential for crystalline oxides grown directly on Ge by atomic layer deposition for advanced electronic applications.

Contributors

Agent

Created

Date Created
  • 2015-02-07