Matching Items (13)

135167-Thumbnail Image.png

A Guide to Large Binocular Telescope Data Reduction

Description

Abstract Located in southeastern Arizona, the Large Binocular Telescope is a great local resource for ASU astronomy/cosmology researchers. As a ground-based observatory, the Large Binocular Telescope can effectively provide deep,

Abstract Located in southeastern Arizona, the Large Binocular Telescope is a great local resource for ASU astronomy/cosmology researchers. As a ground-based observatory, the Large Binocular Telescope can effectively provide deep, complementary observations of science fields in the wavelength range of 3,500 to 10,000 Angstroms. This gives scientists a lot of opportunity for various science projects, which can lead to massive amounts of observations being taken by research schools with ties to the LBT. Such is the case with ASU, which has obtained over 30 hours of data in just the SDT Uspec filter on board the Large Binocular Camera (Blue) and much more time in other filters observing longer wavelengths. Because of this, there is a huge need for establishing a system that will allow the reduction of raw astronomical images from the LBT to be quickly, but accurately. This manuscript serves as a presentation of the work done over the 2015-2016 school year to establish a pipeline for reducing LBT raw science images as well as a guide for future undergraduates and graduates to reduce data on their own.

Contributors

Agent

Created

Date Created
  • 2016-05

148332-Thumbnail Image.png

SED Analysis of 43 Spectroscopically Confirmed Galaxies at z ~ 6 to Constrain Possible Relationships between UV Slope, Model Dust Attenuation, and Escape Fraction

Description

The reionization of the Universe is thought to have completed by redshift z~5.5. To probe this era, galaxy observations in the Subaru Deep Field (SDF) have identified more than 100

The reionization of the Universe is thought to have completed by redshift z~5.5. To probe this era, galaxy observations in the Subaru Deep Field (SDF) have identified more than 100 galaxies at z~6, many spectroscopically confirmed through follow-up observations. Using available optical/IR data, we model with CIGALE the spectral energy distributions (SEDs) of 43 SDF galaxies, including newly acquired data from the UKIRT WFCAM K-band for seven previously studied objects. In particular, modeling deep IR photometry is sensitive to the galaxy's Lyman continuum (LyC) escape fraction (fesc). We find the median implied fesc value as ~0.4+/-0.1 (mean error). Significant uncertainties in data and fitting result in a large range of fesc for individual objects, but analysis suggests that fesc is likely high enough for galaxies to finish reionization by z~6. More importantly, we find trends between the CIGALE UV slope b, fesc, and dust extinction E(B-V): for a given E(B-V), b appear steeper by ~0.4 than at z=0. Lower fesc values appear to be associated with bluer b and lower E(B-V), but only weakly. This suggests that LyC could have escaped through holes with sufficiently wide opening angles surrounding the ISM from outflows of supernovae and/or weak AGN to escape, but resulting in a large range of implied fesc values depending on the orientation of each galaxy. The current HST, Spitzer and ground-based photometric and model errors for the 43 galaxies are large, so IR spectroscopic observations with the James Webb Space Telescope are needed to better constrain this possibility.

Contributors

Agent

Created

Date Created
  • 2021-05

133462-Thumbnail Image.png

The Potential Use for Strong Gravitational Lensing in the Detection of Dark Matter

Description

Both strong and weak gravitational lensing allow astronomers to calculate the mass distribution of the foreground lens by analysis of the distortion of the lensed light. This process is currently

Both strong and weak gravitational lensing allow astronomers to calculate the mass distribution of the foreground lens by analysis of the distortion of the lensed light. This process is currently the most precise way to quantify the presence of dark matter in galaxies. In addition, strong gravitational lensing allows astronomers to observe directly the light from the background source, as it will be both magnified in brightness and easier to resolve. Current computer models can essentially "remove" the foreground galaxy/galaxies to isolate and reconstruct an image of the background source with a resolution greater than that observed without lensing. Both the measurement of dark matter within galaxies and the direct observation of lensed galaxies are goals for this project. This was done using LENSTOOL, a software package chosen for the project, and originally designed to perform such calculations efficiently. While neither goal was met in its entirety, this paper reflects the results of this project throughout the course of the past year.

Contributors

Agent

Created

Date Created
  • 2018-05

133566-Thumbnail Image.png

Validation of Active Pixel Sensors to Develop Enhanced Star Trackers

Description

Active pixel sensors hold a lot of promise for space applications in star tracking because of their effectiveness against radiation, small size, and on-chip processing. The research focus is on

Active pixel sensors hold a lot of promise for space applications in star tracking because of their effectiveness against radiation, small size, and on-chip processing. The research focus is on documenting and validating ground test equipment for these types of sensors. Through demonstrating the utility of a commercial sensor, the research will be able to work on ensuring the accuracy of ground tests. This contribution allows for future research on improving active pixel sensor performance.

Contributors

Agent

Created

Date Created
  • 2018-05

148427-Thumbnail Image.png

Image Simulations for Testing the Fidelity of SKYSURF Background Measurement Algorithms

Description

The goal of Hubble Space Telescope Cycle 27–29 Archival Legacy project “SKYSURF” is to measure the panchromatic sky surface brightness and source catalogs from all archival HST ACS and WFC3

The goal of Hubble Space Telescope Cycle 27–29 Archival Legacy project “SKYSURF” is to measure the panchromatic sky surface brightness and source catalogs from all archival HST ACS and WFC3 images since the launch of these instruments by the Space Shuttle—more than 57,000 images in total since 2002. All SKYSURF images together will measure the panchromatic Zodiacal brightness, the Diffuse Galactic Light, and the Extragalactic Background Light. SKYSURF will significantly constrain the various amounts of diffuse light in the universe with major ramifications for cosmic star formation and planet formation.<br/><br/>Several sky background measurement algorithms are capable of measuring the background levels of images in the SKYSURF database. To test the fidelity of these sky background measurement algorithms, images with known sky background and noise levels were necessary to determine quantitatively how far a sky measurement algorithm strays from the true value. For this purpose, I developed an algorithm that could create simulated images for filter F125W of the WFC3/IR instrument on the Hubble Space Telescope (HST). Filter F125W was selected because the Extragalactic Background Light is brightest in this wavelength band; moreover, the COBE Zodiacal light measurement is also at 1.25 microns. The simulated images created contain stars, galaxies, cosmic rays, and light gradients. We discuss here how these simulated images were made and the different kinds of simulated images that were produced.

Contributors

Agent

Created

Date Created
  • 2021-05

132911-Thumbnail Image.png

Correlating Galactic Magnetic Fields with Regions of Dense Star Formation using LOFAR and CALIFA

Description

I test the hypothesis that galactic magnetic fields originate from regions of dense
star formation (Dahlem et al. 2006) by comparing maps of 120-240 MHz synchrotron emission and hydrogen alpha

I test the hypothesis that galactic magnetic fields originate from regions of dense
star formation (Dahlem et al. 2006) by comparing maps of 120-240 MHz synchrotron emission and hydrogen alpha (Hα) emission of the tidally-interacting, edge-on, barred spiral galaxy UGC 9665. Synchrotron emission traces magnetic field strength to a rough first order, while Hα emission traces recent massive star formation. UGC 9665 was selected because it was included in the LOw Frequency ARray (LOFAR) TwoMetre Sky Survey (LoTSS; Shimwell et al. (2017)) as well as the Calar Alto Legacy Integral Field Area Survey (CALIFA; Sanchez et al. (2012)). I generated vertical intensity profiles at several distances along the disk from the galactic center for synchrotron emission and Hα in order to measure how the intensity of each falls off with distance from the midplane. In addition to correlating the vertical profiles to see if there is a relationship between star formation and magnetic field strength, I fit the LOFAR vertical profiles to characteristic Gaussian and exponential functions given by Dumke et al. (1995). Fitting these equations have been shown to be good indicators of the main mode of cosmic ray transport, whether it is advection (exponential fit) or diffusion (Gaussian fit) (Heesen et al. 2016). Cosmic rays originate from supernova,
and core collapse supernovae occur in star forming regions, which also produce
advective winds, so I test the correlation between star-forming regions and advective regions as predicted by the Heesen et al. (2016) method. Similar studies should be conducted on different galaxies in the future in order to further test these hypotheses and how well LOFAR and CALIFA complement each other, which will be made possible by the full release of the LOFAR Two-Metre Sky Survey (LoTSS) (Shimwell et al. 2017).

Contributors

Agent

Created

Date Created
  • 2019-05

150214-Thumbnail Image.png

Luminosity function of Lyman-alpha emitters at the reionization epoch: observations & theory

Description

Galaxies with strong Lyman-alpha (Lya) emission line (also called Lya galaxies or emitters) offer an unique probe of the epoch of reionization - one of the important phases when most

Galaxies with strong Lyman-alpha (Lya) emission line (also called Lya galaxies or emitters) offer an unique probe of the epoch of reionization - one of the important phases when most of the neutral hydrogen in the universe was ionized. In addition, Lya galaxies at high redshifts are a powerful tool to study low-mass galaxy formation. Since current observations suggest that the reionization is complete by redshift z~ 6, it is therefore necessary to discover galaxies at z > 6, to use their luminosity function (LF) as a probe of reionization. I found five z = 7.7 candidate Lya galaxies with line fluxes > 7x10-18 erg/s/cm/2 , from three different deep near-infrared (IR) narrowband (NB) imaging surveys in a volume > 4x104Mpc3. From the spectroscopic followup of four candidate galaxies, and with the current spectroscopic sensitivity, the detection of only the brightest candidate galaxy can be ruled out at 5 sigma level. Moreover, these observations successfully demonstrate that the sensitivity necessary for both, the NB imaging as well as the spectroscopic followup of z~ 8 Lya galaxies can be reached with the current instrumentation. While future, more sensitive spectroscopic observations are necessary, the observed Lya LF at z = 7.7 is consistent with z = 6.6 LF, suggesting that the intergalactic medium (IGM) is relatively ionized even at z = 7.7, with neutral fraction xHI≤ 30%. On the theoretical front, while several models of Lya emitters have been developed, the physical nature of Lya emitters is not yet completely known. Moreover, multi-parameter models and their complexities necessitates a simpler model. I have developed a simple, single-parameter model to populate dark mater halos with Lya emitters. The central tenet of this model, different from many of the earlier models, is that the star-formation rate (SFR), and hence the Lya luminosity, is proportional to the mass accretion rate rather than the total halo mass. This simple model is successful in reproducing many observable including LFs, stellar masses, SFRs, and clustering of Lya emitters from z~ 3 to z~ 7. Finally, using this model, I find that the mass accretion, and hence the star-formation in > 30% of Lya emitters at z~ 3 occur through major mergers, and this fraction increases to ~ 50% at z~7.

Contributors

Agent

Created

Date Created
  • 2011

157735-Thumbnail Image.png

The study of astronomical transients in the infrared

Description

Several key, open questions in astrophysics can be tackled by searching for and

mining large datasets for transient phenomena. The evolution of massive stars and

compact objects can be studied over cosmic

Several key, open questions in astrophysics can be tackled by searching for and

mining large datasets for transient phenomena. The evolution of massive stars and

compact objects can be studied over cosmic time by identifying supernovae (SNe) and

gamma-ray bursts (GRBs) in other galaxies and determining their redshifts. Modeling

GRBs and their afterglows to probe the jets of GRBs can shed light on the emission

mechanism, rate, and energetics of these events.

In Chapter 1, I discuss the current state of astronomical transient study, including

sources of interest, instrumentation, and data reduction techniques, with a focus

on work in the infrared. In Chapter 2, I present original work published in the

Proceedings of the Astronomical Society of the Pacific, testing InGaAs infrared

detectors for astronomical use (Strausbaugh, Jackson, and Butler 2018); highlights of

this work include observing the exoplanet transit of HD189773B, and detecting the

nearby supernova SN2016adj with an InGaAs detector mounted on a small telescope

at ASU. In Chapter 3, I discuss my work on GRB jets published in the Astrophysical

Journal Letters, highlighting the interesting case of GRB 160625B (Strausbaugh et al.

2019), where I interpret a late-time bump in the GRB afterglow lightcurve as evidence

for a bright-edged jet. In Chapter 4, I present a look back at previous years of

RATIR (Re-ionization And Transient Infra-Red Camera) data, with an emphasis on

the efficiency of following up GRBs detected by the Fermi Space Telescope, before

some final remarks and brief discussion of future work in Chapter 5.

Contributors

Agent

Created

Date Created
  • 2019

157761-Thumbnail Image.png

Dwarf galaxies as laboratories of protogalaxy physics: canonical star formation laws at low metallicity

Description

In the upcoming decade, powerful new astronomical facilities such as the James Webb Space Telescope (JWST), the Square Kilometer Array (SKA), and ground-based 30-meter telescopes will open up the epoch

In the upcoming decade, powerful new astronomical facilities such as the James Webb Space Telescope (JWST), the Square Kilometer Array (SKA), and ground-based 30-meter telescopes will open up the epoch of reionization to direct astronomical observation. One of the primary tools used to understand the bulk astrophysical properties of the high-redshift universe are empirically-derived star-forming laws, which relate observed luminosity to fundamental astrophysical quantities such as star formation rate. The radio/infrared relation is one of the more mysterious of these relations: despite its somewhat uncertain astrophysical origins, this relation is extremely tight and linear, with 0.3 dex of scatter over five orders of magnitude in galaxy luminosity. The effects of primordial metallicities on canonical star-forming laws is an open question: a growing body of evidence suggests that the current empirical star forming laws may not be valid in the unenriched, metal-poor environment of the very early universe.

In the modern universe, nearby dwarf galaxies with less than 1/10th the Solar metal abundance provide an opportunity to recalibrate our star formation laws and study the astrophysics of extremely metal-deficient (XMD) environments in detail. I assemble a sample of nearby dwarf galaxies, all within 100 megaparsecs, with nebular oxygen abundances between 1/5th and 1/50th Solar. I identify the subsample of these galaxies with space-based mid- and far-infrared data, and investigate the effects of extreme metallicities on the infrared-radio relationship. For ten of these galaxies, I have acquired 40 hours of observations with the Jansky Very Large Array (JVLA). C-band (4-8 GHz) radio continuum emission is detected from all 10 of these galaxies. These represent the first radio continuum detections from seven galaxies in this sample: Leo A, UGC 4704, HS 0822+3542, SBS 0940+544, and SBS 1129+476. The radio continuum in these galaxies is strongly associated with the presence of optical H-alpha emission, with spectral slopes suggesting a mix of thermal and non-thermal sources. I use the ratio of the radio and far-infrared emission to investigate behavior of the C-band (4-8 GHz) radio/infrared relation at metallicities below 1/10th Solar.

I compare the low metallicity sample with the 4.8 GHz radio/infrared relationship from the KINGFISHER nearby galaxy sample Tabatabaei et al. 2017 and to the 1.4 GHz radio/infrared relationship from the blue compact dwarf galaxy sample of Wu et al. 2008. The infrared/radio ratio q of the low metallicity galaxies is below the average q of star forming galaxies in the modern universe. I compare these galaxies' infrared and radio luminosities to their corresponding Halpha luminosities, and find that both the infrared/Halpha and the radio/H-alpha ratios are reduced by nearly 1 dex in the low metallicity sample vs. higher metallicity galaxies; however the deficit is not straightforwardly interpreted as a metallicity effect.

Contributors

Agent

Created

Date Created
  • 2018

155509-Thumbnail Image.png

H-alpha emitting galaxies at z ~0.6 in the deep and wide narrowband survey

Description

New measurements of the Hα luminosity function (LF) and star formation rate

(SFR) volume density are presented for galaxies at z∼0.62 in the COSMOS field.

These results are part of the Dee

New measurements of the Hα luminosity function (LF) and star formation rate

(SFR) volume density are presented for galaxies at z∼0.62 in the COSMOS field.

These results are part of the Deep And Wide Narrowband Survey (DAWN), a unique

infrared imaging program with large areal coverage (∼1.1 deg 2 over 5 fields) and

sensitivity (9.9 × 10 −18 erg/cm 2 /s at 5σ).

The present sample, based on a single DAWN field, contains 116 Hα emission-

line candidates at z∼0.62, 25% of which have spectroscopic confirmations. These

candidates have been selected through comparison of narrow and broad-band images

in the infrared and through matching with existing catalogs in the COSMOS field.

The dust-corrected LF is well described by a Schechter function with L* = 10 42.64±0.92

erg s −1 , Φ* = 10 −3.32±0.93 Mpc −3 (L* Φ* = 10 39.40±0.15 ), and α = −1.75 ± 0.09. From

this LF, a SFR density of ρ SF R =10 −1.37±0.08 M○ yr −1 Mpc −3 was calculated. An

additional cosmic variance uncertainty of ∼ 20% is also expected. Both the faint

end slope and luminosity density that are derived are consistent with prior results at

similar redshifts, with reduced uncertainties.

An analysis of these Hα emitters’ sizes is also presented, showing a direct corre-

lation between the galaxies’ sizes and their Hα emission.

Contributors

Agent

Created

Date Created
  • 2017