Matching Items (3)
152842-Thumbnail Image.png
Description
Concrete is the most widely used infrastructure material worldwide. Production of portland cement, the main binding component in concrete, has been shown to require significant energy and account for approximately 5-7% of global carbon dioxide production. The expected continued increased use of concrete over the coming decades indicates this is

Concrete is the most widely used infrastructure material worldwide. Production of portland cement, the main binding component in concrete, has been shown to require significant energy and account for approximately 5-7% of global carbon dioxide production. The expected continued increased use of concrete over the coming decades indicates this is an ideal time to implement sustainable binder technologies. The current work aims to explore enhanced sustainability concretes, primarily in the context of limestone and flow. Aspects such as hydration kinetics, hydration product formation and pore structure add to the understanding of the strength development and potential durability characteristics of these binder systems. Two main strategies for enhancing this sustainability are explored in this work: (i) the use of high volume limestone in combination with other alternative cementitious materials to decrease the portland cement quantity in concrete and (ii) the use of geopolymers as the binder phase in concrete. The first phase of the work investigates the use of fine limestone as cement replacement from the perspective of hydration, strength development, and pore structure. The nature of the potential synergistic benefit of limestone and alumina will be explored. The second phase will focus on the rheological characterization of these materials in the fresh state, as well as a more general investigation of the rheological characterization of suspensions. The results of this work indicate several key ideas. (i) There is a potential synergistic benefit for strength, hydration, and pore structure by using alumina and in portland limestone cements, (ii) the limestone in these systems is shown to react to some extent, and fine limestone is shown to accelerate hydration, (iii) rheological characteristics of cementitious suspensions are complex, and strongly dependent on several key parameters including: the solid loading, interparticle forces, surface area of the particles present, particle size distribution of the particles, and rheological nature of the media in which the particles are suspended, and (iv) stress plateau method is proposed for the determination of rheological properties of concentrated suspensions, as it more accurately predicts apparent yield stress and is shown to correlate well with other viscoelastic properties of the suspensions.
ContributorsVance, Kirk (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Chawla, Nikhilesh (Committee member) / Marzke, Robert (Committee member) / Arizona State University (Publisher)
Created2014
129331-Thumbnail Image.png
Description

Alkali-activated slag concretes are being extensively researched because of its potential sustainability-related benefits. For such concretes to be implemented in large scale concrete applications such as infrastructural and building elements, it is essential to understand its early and long-term performance characteristics vis-à-vis conventional ordinary portland cement (OPC) based concretes. This

Alkali-activated slag concretes are being extensively researched because of its potential sustainability-related benefits. For such concretes to be implemented in large scale concrete applications such as infrastructural and building elements, it is essential to understand its early and long-term performance characteristics vis-à-vis conventional ordinary portland cement (OPC) based concretes. This paper presents a comprehensive study of the property and performance features including early-age isothermal calorimetric response, compressive strength development with time, microstructural features such as the pore volume and representative pore size, and accelerated chloride transport resistance of OPC and alkali-activated binder systems. Slag mixtures activated using sodium silicate solution (SiO2-to-Na2O ratio or Ms of 1–2) to provide a total alkalinity of 0.05 (Na2O-to-binder ratio) are compared with OPC mixtures with and without partial cement replacement with Class F fly ash (20 % by mass) or silica fume (6 % by mass). Major similarities are noted between these binder systems for: (1) calorimetric response with respect to the presence of features even though the locations and peaks vary based on Ms, (2) compressive strength and its development, (3) total porosity and pore size, and (4) rapid chloride permeability and non-steady state migration coefficients. Moreover, electrical impedance based circuit models are used to bring out the microstructural features (resistance of the connected pores, and capacitances of the solid phase and pore-solid interface) that are similar in conventional OPC and alkali-activated slag concretes. This study thus demonstrates that performance-equivalent alkali-activated slag systems that are more sustainable from energy and environmental standpoints can be proportioned.

ContributorsVance, Kirk (Author) / Aguayo, Matthew (Author) / Dakhane, Akash (Author) / Ravikumar, Deepak (Author) / Jain, Jitendra (Author) / Neithalath, Narayanan (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-12-01
129466-Thumbnail Image.png
Description

This paper reports the influence of activator type and concentration on the rheological properties of alkali-activated fly ash suspensions. A thorough investigation of the rheological influences (yield stress and plastic viscosity) of several activator parameters, including: (i) the cation type and concentration of alkali hydroxide and (ii) the alkali-to-binder ratio

This paper reports the influence of activator type and concentration on the rheological properties of alkali-activated fly ash suspensions. A thorough investigation of the rheological influences (yield stress and plastic viscosity) of several activator parameters, including: (i) the cation type and concentration of alkali hydroxide and (ii) the alkali-to-binder ratio (n) and silica modulus (Ms), and (iii) the volume of the activation solution, on the suspension rheology is presented. The results indicate a strong dependence on the cation and its concentration in the activation solution. The viscosity of the activation solution and the volumetric solution-to-powder ratio are shown to most strongly influence the plastic viscosity of the suspension. The suspension yield stress is predominantly influenced by the changes in fly ash particle surface charge and the ionic species in the activator. A shift from non-Newtonian to Newtonian flow behavior is noted in the case of silicate-based suspensions for Ms ≤ 1.5. This behavior, which is not observed at higher MS values, or when the fly ash is dispersed in hydroxide solutions or pure water, is hypothesized to be caused by colloidal siliceous species present in this system, or surface charge effects on the fly ash particles. Comparisons of the rheological response of alkali-activated suspensions to that of portland cement-water suspensions are also reported.

ContributorsVance, Kirk (Author) / Dakhane, Akash (Author) / Sant, Gaurav (Author) / Neithalath, Narayanan (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-11-01