Matching Items (817)
Filtering by

Clear all filters

127924-Thumbnail Image.png
Description

The water resources and hydrologic extremes in Mediterranean basins are heavily influenced by climate variability. Modeling these watersheds is difficult due to the complex nature of the hydrologic response as well as the sparseness of hydrometeorological observations. In this work, we present a strategy to calibrate a distributed hydrologic model,

The water resources and hydrologic extremes in Mediterranean basins are heavily influenced by climate variability. Modeling these watersheds is difficult due to the complex nature of the hydrologic response as well as the sparseness of hydrometeorological observations. In this work, we present a strategy to calibrate a distributed hydrologic model, known as TIN-based Real-time Integrated Basin Simulator (tRIBS), in the Rio Mannu basin (RMB), a medium-sized watershed (472.5 km[superscript 2]) located in an agricultural area in Sardinia, Italy. In the RMB, precipitation, streamflow and meteorological data were collected within different historical periods and at diverse temporal resolutions. We designed two statistical tools for downscaling precipitation and potential evapotranspiration data to create the hourly, high-resolution forcing for the hydrologic model from daily records. Despite the presence of several sources of uncertainty in the observations and model parameterization, the use of the disaggregated forcing led to good calibration and validation performances for the tRIBS model, when daily discharge observations were available. The methodology proposed here can be also used to disaggregate outputs of climate models and conduct high-resolution hydrologic simulations with the goal of quantifying the impacts of climate change on water resources and the frequency of hydrologic extremes within medium-sized basins.

ContributorsMascaro, Giuseppe (Author) / Piras, M. (Author) / Deidda, R. (Author) / Vivoni, Enrique (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2013-10-24
127923-Thumbnail Image.png
Description

Risks are inherent in construction projects. In order to manage risks, contingency amount is set aside usually in an escrow account. Cost contingency can be a handsome amount that would get blocked during the execution of the project for further use, incurring constant opportunity cost. The stakeholders may wish to

Risks are inherent in construction projects. In order to manage risks, contingency amount is set aside usually in an escrow account. Cost contingency can be a handsome amount that would get blocked during the execution of the project for further use, incurring constant opportunity cost. The stakeholders may wish to use this held amount for other endeavors during project execution. The managerial practices for dynamic contingency management are of extreme importance. Stakeholders anticipate risks and hindsight project performance by eyeing key performance indicators of a project to direct decisions. The aim of this research is to integrate project key performance indicators with future risk perception to develop a decision support system for facilitating cost contingency release requests. The model is expected to help decision making to ease the managerial burden ensuring effective use of contingency. The findings are not conclusive due to ongoing nature of research.

ContributorsAyub, Bilal (Author) / Thaheem, Muhammad Jamaluddin (Author) / Din, Zia Ud (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-05-20
127921-Thumbnail Image.png
Description

Design of novel infrastructure materials requires a proper understanding of the influence of microstructure on the desired performance. The priority is to seek new and innovative ways to develop sustainable infrastructure materials using natural resources and industrial solid wastes in a manner that is ecologically sustainable and yet economically viable.

Design of novel infrastructure materials requires a proper understanding of the influence of microstructure on the desired performance. The priority is to seek new and innovative ways to develop sustainable infrastructure materials using natural resources and industrial solid wastes in a manner that is ecologically sustainable and yet economically viable. Structural materials are invariably designed based on mechanical performance. Accurate prediction of effective constitutive behavior of highly heterogeneous novel structural materials with multiple microstructural phases is a challenging task. This necessitates reliable classification and characterization of constituent phases in terms of their volume fractions, size distributions and intrinsic elastic properties, coupled with numerical homogenization technique. This paper explores a microstructure-guided numerical framework that derives inputs from nanoindentation and synchrotron x-ray tomography towards the prediction of effective constitutive response of novel sustainable structural materials so as to enable microstructure-guided design.

ContributorsDas, Sumanta (Author) / Xiao, Xianghui (Author) / Chawla, Nikhilesh (Author) / Neithalath, Narayanan (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-02-22
127919-Thumbnail Image.png
Description

A tetradentate Pd(II) complex, Pd3O3, which exhibits highly efficient excimer emission is synthesized and characterized. Pd3O3 can achieve blue emission despite using phenyl-pyridine emissive ligands which have been a mainstay of stable green and red phosphorescent emitter designs, making Pd3O3 a good candidate for stable blue or white OLEDs. Pd3O3

A tetradentate Pd(II) complex, Pd3O3, which exhibits highly efficient excimer emission is synthesized and characterized. Pd3O3 can achieve blue emission despite using phenyl-pyridine emissive ligands which have been a mainstay of stable green and red phosphorescent emitter designs, making Pd3O3 a good candidate for stable blue or white OLEDs. Pd3O3 exhibits strong and efficient phosphorescent excimer emission expanding the excimer based white OLEDs beyond the sole class of Pt complexes. Devices of Pd3O3 demonstrate peak external quantum efficiencies as high as 24.2% and power efficiencies of 67.9 Lm per W for warm white devices. Furthermore, Pd3O3 devices in a carefully designed stable structure achieved a device operational lifetime of nearly 3000 h at 1000 cd m-2 without any outcoupling enhancement while simultaneously achieving peak external quantum efficiencies of 27.3% and power efficiencies over 81 Lm per W.

ContributorsFleetham, Tyler (Author) / Ji, Yunlong (Author) / Huang, Liang (Author) / Fleetham, Trenten (Author) / Li, Jian (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-09-11
127918-Thumbnail Image.png
Description

Ambient air temperatures are expected to increase in the US desert southwest by 1-5 °C mid-century which will strain the electric power grid through increased loads, reduced power capacities, efficiencies, and material lifespans. To better understand and quantify this risk, a power infrastructure failure model is created to estimate changes

Ambient air temperatures are expected to increase in the US desert southwest by 1-5 °C mid-century which will strain the electric power grid through increased loads, reduced power capacities, efficiencies, and material lifespans. To better understand and quantify this risk, a power infrastructure failure model is created to estimate changes in outage rates of components for increases in air temperatures in Arizona. Components analyzed include generation, transmission lines, and substations, because their outages can lead to cascading failures and interruptions of other critical infrastructure systems such as water, transportation, and information/communication technology. Preliminary results indicate that components could require maintenance or replacement up to 3 times more often due to mechanical failures, outages could occur up to 30 times more often due to overcurrent tripping, and the probability of cascading failures could increase 30 times as well for a 1 °C increase in ambient air temperature. Preventative measures can include infrastructure upgrades to more thermal resistant parts, installation of cooling systems, smart grid power flow controls, and expanding programs for demand side management and customer energy efficiency.

ContributorsBurillo, Daniel (Author) / Chester, Mikhail Vin (Author) / Ruddell, Benjamin (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-05-20
128013-Thumbnail Image.png
Description

Chromatin is a system of proteins, RNA, and DNA that interact with each other to organize and regulate genetic information within eukaryotic nuclei. Chromatin proteins carry out essential functions: packing DNA during cell division, partitioning DNA into sub-regions within the nucleus, and controlling levels of gene expression. There is a

Chromatin is a system of proteins, RNA, and DNA that interact with each other to organize and regulate genetic information within eukaryotic nuclei. Chromatin proteins carry out essential functions: packing DNA during cell division, partitioning DNA into sub-regions within the nucleus, and controlling levels of gene expression. There is a growing interest in manipulating chromatin dynamics for applications in medicine and agriculture. Progress in this area requires the identification of design rules for the chromatin system. Here, we focus on the relationship between the physical structure and function of chromatin proteins. We discuss key research that has elucidated the intrinsic properties of chromatin proteins and how this information informs design rules for synthetic systems. Recent work demonstrates that chromatin-derived peptide motifs are portable and in some cases can be customized to alter their function. Finally, we present a workflow for fusion protein design and discuss best practices for engineering chromatin to assist scientists in advancing the field of synthetic epigenetics.

ContributorsTekel, Stefan (Author) / Haynes, Karmella (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-06-13
128009-Thumbnail Image.png
Description

Background: The efficacy of deep brain stimulation (DBS) in Parkinson’s disease has been convincingly demonstrated in studies comparing motor performance with and without stimulation, but characterization of the stimulation dose-response curves has been limited.

Methods: In a series of case studies, eight subjects with Parkinson’s disease and bilateral DBS systems were

Background: The efficacy of deep brain stimulation (DBS) in Parkinson’s disease has been convincingly demonstrated in studies comparing motor performance with and without stimulation, but characterization of the stimulation dose-response curves has been limited.

Methods: In a series of case studies, eight subjects with Parkinson’s disease and bilateral DBS systems were evaluated at their clinically determined stimulation (CDS) and at three reduced amplitudes, ie, approximately 70%, 30%, and 0% of the CDS (MOD, LOW, and OFF, respectively). Performance was assessed using the motor section of the Unified Parkinson’s Disease Rating Scale (UPDRS-III), which includes subscores for tremor, bradykinesia, gait, posture, and tapping. Data at the reduced settings were analyzed to determine if individual subjects demonstrated a threshold-like response, which was defined as a dose-response curve in which one decrement in stimulation accounted for ≥70% of the maximum change observed. Day-to-day variability was assessed using the CDS data from the three different days.

Results: In the dose-response curves, two subjects exhibited a threshold-like response, four exhibited a graded change, and two did not exhibit substantial changes. For some subjects, variability in CDS performance across the three days exceeded the change observed when reducing amplitude to the MOD setting. Comparisons across this set of eight subjects demonstrated that the mean UPDRS-III and all but one subscore significantly increased (performance degraded) when amplitude was reduced from CDS to the LOW and OFF conditions, but there were no significant changes when amplitude was reduced from CDS to the MOD condition.

Conclusion: Individual differences in the DBS dose-response curves may provide opportunities to optimize clinical performance. Day-to-day variability in motor performance cautions against the use of a single UPDRS measurement in clinical selection of DBS settings.

ContributorsConovaloff, Alison (Author) / Krishnamurthi, Narayanan (Author) / Mahant, Padma (Author) / Samanta, Johan (Author) / Abbas, James (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2012-12-11
128007-Thumbnail Image.png
Description

Various biologically inspired flow field designs of the gas distributor (interconnector) have been designed and simulated. Their performance using Nafion-212 with humidified H2 and Air at 80 °C with the ANSYS Fluent Fuel Cell module software was evaluated. Novel interdigitated designs were optimized by obeying biologically inspired branching rules. These

Various biologically inspired flow field designs of the gas distributor (interconnector) have been designed and simulated. Their performance using Nafion-212 with humidified H2 and Air at 80 °C with the ANSYS Fluent Fuel Cell module software was evaluated. Novel interdigitated designs were optimized by obeying biologically inspired branching rules. These rules allow for more mathematically formal descriptions of flow field designs, enabling relatively simple optimization. The channel to land ratio was kept equivalent between designs with typical values between 0.8 and 1.0. The pressure drop and the current density distribution were monitored for each design on both anode and cathode sides. The most promising designs are expected to exhibit lower pressure drop however, low pressure drop can also be an indication of potential water flooding at higher operating current density. A biologically inspired interdigitated design with 9 inlet channels exhibited reduced pressure drop and improved current density distribution compared to all other interdigitated designs evaluated in this study. The simulated fuel cell performance data at ambient pressure with humidified H2 and air compares well with the experimental data using a single serpentine flow field design.

ContributorsArvay, Adam (Author) / French, Jason (Author) / Wang, Jui-Chieh (Author) / Peng, Xihong (Author) / Kannan, Arunachala Mada (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015
128004-Thumbnail Image.png
Description

Evolutionary games model a common type of interactions in a variety of complex, networked, natural systems and social systems. Given such a system, uncovering the interacting structure of the underlying network is key to understanding its collective dynamics. Based on compressive sensing, we develop an efficient approach to reconstructing complex

Evolutionary games model a common type of interactions in a variety of complex, networked, natural systems and social systems. Given such a system, uncovering the interacting structure of the underlying network is key to understanding its collective dynamics. Based on compressive sensing, we develop an efficient approach to reconstructing complex networks under game-based interactions from small amounts of data. The method is validated by using a variety of model networks and by conducting an actual experiment to reconstruct a social network. While most existing methods in this area assume oscillator networks that generate continuous-time data, our work successfully demonstrates that the extremely challenging problem of reverse engineering of complex networks can also be addressed even when the underlying dynamical processes are governed by realistic, evolutionary-game type of interactions in discrete time.

ContributorsWang, Wen-Xu (Author) / Lai, Ying-Cheng (Author) / Grebogi, Celso (Author) / Ye, Jieping (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2011-12-21
127999-Thumbnail Image.png
Description

Chromatin proteins have expanded the mammalian synthetic biology toolbox by enabling control of active and silenced states at endogenous genes. Others have reported synthetic proteins that bind DNA and regulate genes by altering chromatin marks, such as histone modifications. Previously, we reported the first synthetic transcriptional activator, the “Polycomb-based transcription

Chromatin proteins have expanded the mammalian synthetic biology toolbox by enabling control of active and silenced states at endogenous genes. Others have reported synthetic proteins that bind DNA and regulate genes by altering chromatin marks, such as histone modifications. Previously, we reported the first synthetic transcriptional activator, the “Polycomb-based transcription factor” (PcTF) that reads histone modifications through a protein–protein interaction between the polycomb chromodomain motif and trimethylated lysine 27 of histone H3 (H3K27me3). Here, we describe the genome-wide behavior of the polycomb-based transcription factor fusion protein. Transcriptome and chromatin profiling revealed several polycomb-based transcription factor-sensitive promoter regions marked by distal H3K27me3 and proximal fusion protein binding. These results illuminate a mechanism in which polycomb-based transcription factor interactions bridge epigenomic marks with the transcription initiation complex at target genes. In three cancer-derived human cell lines tested here, some target genes encode developmental regulators and tumor suppressors. Thus, the polycomb-based transcription factor represents a powerful new fusion protein-based method for cancer research and treatment where silencing marks are translated into direct gene activation.

ContributorsNyer, David (Author) / Daer, Rene (Author) / Vargas, Daniel (Author) / Hom, Caroline (Author) / Haynes, Karmella (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-01-09