Matching Items (25)
152652-Thumbnail Image.png
Description
A mule deer herd exists on the northern rim of the Grand Canyon, located on the North Kaibab Plateau. Historical references to this indigenous mule deer herd presented reports of periodic population irruption and collapse. Partially funded by the Arizona Game and Fish Department and the Arizona Deer Association, examination

A mule deer herd exists on the northern rim of the Grand Canyon, located on the North Kaibab Plateau. Historical references to this indigenous mule deer herd presented reports of periodic population irruption and collapse. Partially funded by the Arizona Game and Fish Department and the Arizona Deer Association, examination of herd nutritional and metabolic status from the Fall 2005 - Spring 2008 was completed at the request of AzGFD and ADA. Habitat analysis included forage micro-histological, protein, and caloric content plus whole blood and plasma assays gauging herd metabolic response. Modelling was completed using best management practices wildlife energy demand calculations and principal component analysis. Forage quality analysis and modelling suggest a sufficient amount of nitrogen (N) available (DPI) to the deer for protein synthesis. Energy analysis (MEI) of forage suggest caloric deficiencies are widely prevalent on the north Kaibab plateau. Principal component analysis integrates forage and metabolic results providing a linear regression model describing the dynamics of forage utilization, energy availability, and forage nitrogen supply with metabolic demand and response of the mule deer herd. Most of the plasma and blood metabolic indicators suggest baseline values for the North Kaibab mule deer. Albumin values are in agreement with albumin values for mule deer in the Southwest. I suggest that the agreed values become a standard for mule deer in the Southwestern U.S. As excess dietary N is converted to a caloric resource, a continual state of under-nutrition exists for the deer upon entering the N. Kaibab winter range. The population is exceeding the nutritional resource plane that the winter habitat provides. Management recommendations include implementation of multiple small-scale habitat rehabilitation efforts over time, including invasive juniper (Juniperous osteosperma) and piñon (Pinus edulis) management, prescribed burning to control big sage (Artemesia tridentata) populations, and reseeding treated areas with a seed mix of native shrubs, grasses and forbs. I recommended that the population size of the North Kaibab deer herd is maintained at the current size with natural selection controlling growth, or the population be artificially reduced through increased hunting opportunities.
ContributorsActon, Matthew W (Author) / Miller, William H. (Thesis advisor) / Brady, Ward W. (Committee member) / Huffman, Holly (Committee member) / Arizona State University (Publisher)
Created2014
132483-Thumbnail Image.png
Description
White-nose syndrome (WNS) is a fungal infection devastating bat populations throughout eastern North America. WNS is caused by a fungus, Pseudogymnoascus destructans (Pd), that invades the skin of hibernating bats. While there are a number of treatments being researched, there is currently no effective treatment for WNS that is deployed

White-nose syndrome (WNS) is a fungal infection devastating bat populations throughout eastern North America. WNS is caused by a fungus, Pseudogymnoascus destructans (Pd), that invades the skin of hibernating bats. While there are a number of treatments being researched, there is currently no effective treatment for WNS that is deployed in the field, except a few being tested on a limited scale. Bats have lowered immune function and response during hibernation, which may increase susceptibility to infection during the winter months. Antimicrobial peptides (AMPs) are a crucial component of the innate immune system and serve as barriers against infection. AMPs are constitutively expressed on skin and facilitate wound healing, stimulate other immune responses, and may also stay active on bat skin during hibernation. AMPs are expressed by all tissues, have direct killing abilities against microbes, and are a potential treatment for bats infected with Pd. In this investigation, the fungicidal activity of several readily available commercial AMPs were compared, and killing assay protocols previously investigated by Frasier and Lake were replicated to establish a control trial for use in future killing assays. Another aim of this investigation was to synthesize a bat-derived AMP for use in the killing assay. Sequences of bat-derived AMPs have been identified in bat skin samples obtained from a large geographic sampling of susceptible and resistant species. Contact was made with GenScript Inc., the company from which commercially available AMPs were purchased, to determine the characteristics of peptide sequences needed to synthesize an AMP for lab use. Based on recommendations from GenScript Inc., peptide sequences need to have a hydrophobicity of less than 50% and a sequence length of less than 50 amino acids. These criteria serve as a potential barrier because none of the known bat-derived sequences analyzed satisfy both of these requirements. The final aim of this study was to generate a conceptual model of the immune response molecules activated when bats are exposed to a fungal pathogen such as Pd. Overall, this work investigated sources of variability between trials of the killing assay, analyzed known bat-derived peptide sequences, and generated a conceptual model that will serve as a guideline for identification of immune response molecules on the skin of bats in future proteomics work.
ContributorsBarton, Madisen L (Author) / Moore, Marianne (Thesis director) / Penton, Christopher (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133861-Thumbnail Image.png
Description
Dental caries are considered the most common infectious diseases that impacts human populations worldwide. The human oral cavity is colonized by a wide range of microorganisms including viruses, protozoa, fungi, archaea and bacteria. Oral diseases begin with the development of dental plaque, a biofilm formed by the accumulation of bacteria.

Dental caries are considered the most common infectious diseases that impacts human populations worldwide. The human oral cavity is colonized by a wide range of microorganisms including viruses, protozoa, fungi, archaea and bacteria. Oral diseases begin with the development of dental plaque, a biofilm formed by the accumulation of bacteria. Of these bacteria, Streptococcus mutans has been identified as the leading cause of dental caries. Probiotics are described as live microorganisms which provide beneficial impacts to their host by improving the intestinal microbial balance. Studies have demonstrated that probiotic therapies may be suitable for decreasing the cariogenic potential of S. mutans as well as other cariogenic bacteria. In this study, it was hypothesized that probiotics would exhibit a significant effect on the population density of S. mutans within the oral cavity. Nine people selected in this study consumed Activia probiotic yogurt for a seven-day trial period. DNA was extracted from these swabs and analyzed by qPCR. The results showed the amount of S. mutans increased insignificantly (P>0.05), whereas the proportion of S. mutans in the entire community was insignificant (P>0.05). Individual subjects responded differently to treatment, indicating the influence of their preferential diet on S. mutans abundance. Studies conducted on the probiotic strains within the Activia yogurt were previously shown to be insufficient in antagonizing cariogenic bacteria, which attributes to these results.
ContributorsPortales, Lilia Katherine (Author) / Huffman, Holly (Thesis director) / Penton, Ryan (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133592-Thumbnail Image.png
Description
White-nose syndrome (WNS) is a fungal disease that infects hibernating bats of multiple species across large portions of eastern North America. To date, WNS has been responsible for the deaths of over seven million bats. It is not yet known why certain species are able to resist infection. Since the

White-nose syndrome (WNS) is a fungal disease that infects hibernating bats of multiple species across large portions of eastern North America. To date, WNS has been responsible for the deaths of over seven million bats. It is not yet known why certain species are able to resist infection. Since the fungus invades the skin and some resistant species show no signs of the characteristic cutaneous lesions, it seems likely that resistant species contain specific defense mechanisms within their skin, such as antimicrobial peptides (AMPs) and other immunologically relevant proteins expressed by specific cell types or as secreted soluble components. Proteomics could be a useful tool for understanding differences in susceptibility, and could help identify AMPs that could be synthesized and used as control agents against the spread of the causative fungus. This study is the first to optimize proteomics methods for bat wing tissues in order to compare the skin proteomes of species variably impacted by WNS, including those of two endangered species. Further tests are planned to investigate methods of increasing protein yield without altering the size of the tissue sample collected, as well as the analysis of mass spectrometry data from processed skin tissues of five bat species differentially affected by WNS.
ContributorsPatrose, Reena Paulene (Author) / Moore, Marianne (Thesis director) / Steele, Kelly (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134509-Thumbnail Image.png
Description
Phytohemagglutinin (PHA) is a plant lectin commonly used to stimulate and test responses of the immune system and is known to induce T cell proliferation, agglutinate human leukocytes, and yield adjustments in lymphocyte populations. What is not well know is how responses to PHA correlate with a host's ability to

Phytohemagglutinin (PHA) is a plant lectin commonly used to stimulate and test responses of the immune system and is known to induce T cell proliferation, agglutinate human leukocytes, and yield adjustments in lymphocyte populations. What is not well know is how responses to PHA correlate with a host's ability to resist or recover from pathogen invasion. This study uses information from previously published studies to determine whether or not PHA can be a good indicator of disease severity or disease resistance in a host. With PHA having the abilities that it does, immune responses to PHA may correlate with responses important for pathogen resistance and clearance. Such a relationship could only be uncovered if in vivo or in vitro responses to PHA are measured and, independent from the PHA challenge, symptoms and/or mortality rates of hosts are documented after pathogen exposure. An in vitro response can be detected by measuring cellular proliferation in response to PHA followed by separate cell cultures exposed to a pathogen. While an in vivo response can be detected by measuring variation in swelling in response to an injection of PHA. In reviewing a broad range of articles that meet my criteria, the majority of articles failed to show a strong relationship between PHA and disease severity or disease resistance. Therefore, immunologists must consider the usefulness of the PHA tests as a measure of immunocompetence, which is a host's ability to predict response to a pathogen. According to the literature, using PHA does not predict responses to pathogen invasion. However, it is possible that with carefully designed experiments, it could be determined that PHA does provide an indication of pathogen resistance in certain host species exposed to specific pathogen.
ContributorsMackey, Tracy Michelle (Author) / Moore, Marianne (Thesis director) / Penton, Ryan (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134715-Thumbnail Image.png
Description
Sexually transmitted diseases like gonorrhea and chlamydia, standardly treated with antibiotics, produce over 1.2 million cases annually in the emergency department (Jenkins et al., 2013). To determine a need for antibiotics, hospital labs utilize bacterial cultures to isolate and identify possible pathogens. Unfortunately, this technique can take up to 72

Sexually transmitted diseases like gonorrhea and chlamydia, standardly treated with antibiotics, produce over 1.2 million cases annually in the emergency department (Jenkins et al., 2013). To determine a need for antibiotics, hospital labs utilize bacterial cultures to isolate and identify possible pathogens. Unfortunately, this technique can take up to 72 hours, leading to several physicians presumptively treating patients based solely on history and physical presentation. With vague standards for diagnosis and a high percentage of asymptomatic carriers, several patients undergo two scenarios; over- or under-treatment. These two scenarios can lead to consequences like unnecessary exposure to antibiotics and development of secondary conditions (for example: pelvic inflammatory disease, infertility, etc.). This presents a need for a laboratory technique that can provide reliable results in an efficient matter. The viability of DNA-based chip targeted for C. trachomatis, N. gonorrhoeae, and other pathogens of interest were evaluated. The DNA-based chip presented several advantages as it can be easily integrated as a routine test given the process is already well-known, is customizable and able to target multiple pathogens within a single test and has the potential to return results within a few hours as opposed to days. As such, implementation of a DNA-based chip as a diagnostic tool is a timely and potentially impactful investigation.
ContributorsCharoenmins, Patherica (Author) / Penton, Christopher (Thesis director) / Moore, Marianne (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134734-Thumbnail Image.png
Description
"Going back as far as the time of Hippocrates, ancient Egyptians, tribal African nations, and many other early civilizations, humans used herbal remedies to treat their ailments. One such remedy was willow bark, used in tea form, to treat rheumatism and fevers. This remedy was around for many thousands of

"Going back as far as the time of Hippocrates, ancient Egyptians, tribal African nations, and many other early civilizations, humans used herbal remedies to treat their ailments. One such remedy was willow bark, used in tea form, to treat rheumatism and fevers. This remedy was around for many thousands of years, along with other treatments containing salicylates, although this was not understood at the time. As time has gone on, the willow bark tea has been transformed into aspirin as we know it today. In addition to its medicinal uses, aspirin has become versatile in its uses, including use in homemade facial treatments and in the garden. As beneficial as aspirin has been, there are negative consequences to its use, particularly in young children, and it may have strange effects on gender when used by pregnant women. From such humble beginnings, aspirin has been shown to be more than a simple painkiller." Topics discussed in this paper include: the origins of aspirin and its use as a medical treatment, the beginnings of aspirin as it is known today, how aspirin interacts with the body, the specific chemical reactions that occur when aspirin is taken, aspirin as part of a heart health regimen, the possible uses of aspirin in treating cancer, general information about dosages and typical aspirin use, some side effects of aspirin use, and novel uses of aspirin that are not necessarily medical in nature. The beneficial nature of aspirin and the possibilities it presents are discussed alongside information about its potential limitations and negative effects.
ContributorsMontes, Ariana (Author) / Huffman, Holly (Thesis director) / Garg, Vikas (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133305-Thumbnail Image.png
Description
Vitamin supplements have beneficial and adverse effects depending on the dosage given and the age and sex of the recipient. Vitamin supplements have been extremely profitable in the health industry, but there is limited scientific data supporting vitamin supplement benefits. Many studies over the last decade have shown that vitamin

Vitamin supplements have beneficial and adverse effects depending on the dosage given and the age and sex of the recipient. Vitamin supplements have been extremely profitable in the health industry, but there is limited scientific data supporting vitamin supplement benefits. Many studies over the last decade have shown that vitamin supplements provide few health benefits and can lead to adverse effects, such as abnormal bone growth, birth defects, or an increased risk of cancer. Some researchers state that people with a specific vitamin deficiency should take vitamin supplements because the supplement can alleviate this deficiency. Many healthy people take vitamin supplements to prevent disease or have better health, but some researchers argue this is a misconception. Most health organizations indicate that consuming vitamins should be through diet, not supplements. The value of dietary supplements, most of which are consumed in developed countries, has been a controversial topic, because the beneficial effects of taking vitamin supplements is hotly contested. Many experts in the field of nutritional physiology suggest that Americans adequately receive enough vitamins in their diet and do not need to take vitamin supplements. Researchers at John Hopkins announced that the United States should stop spending money on vitamin supplements. Their research has found no benefits to taking vitamin supplements, because most people in industrialized areas are well-nourished. In this study, I have gathered that vitamin supplements are not beneficial when one has a sufficiently nutrient-rich diet; whereas, one who has a vitamin deficient diet can benefit from taking vitamin supplements. Furthermore, I have gathered that people older than 65-years-old should take vitamin B12 because vitamin B12 levels decrease with age. There is not enough evidence to prove or disprove that vitamin supplements are generally beneficial. In fact, I gathered that vitamin supplements may even be harmful. I propose that further studies should be conducted to discover the truth about the possible benefits of vitamin supplementation for healthy individuals and among people with different health conditions, activity levels, and nutrient requirements.
Created2018-05
133500-Thumbnail Image.png
Description
Across large areas of eastern and midwestern North America, a severe reduction in multiple populations of bat species has been observed as the result of the emerging fungal disease, white-nose syndrome (WNS). WNS is caused by a psychrophilic (i.e. cold loving) fungus, Pseudogymnoascus destructans (Pd), that invades the skin of

Across large areas of eastern and midwestern North America, a severe reduction in multiple populations of bat species has been observed as the result of the emerging fungal disease, white-nose syndrome (WNS). WNS is caused by a psychrophilic (i.e. cold loving) fungus, Pseudogymnoascus destructans (Pd), that invades the skin of bats during hibernation. Recent studies have shown that during hibernation, bats have decreased immune system activity which would suggest increased susceptibility to infection. Antimicrobial peptides (AMPs) are an important component of the innate immune system and are expressed constitutively within all tissues that serve as barriers against infection. Killing pathogens at the level of the skin could prevent the need for more complex immune responses likely inhibited during hibernation, and therefore AMPs could be critical in combating infection by Pd and reducing population loss of susceptible bat species. In this investigation, the fungicidal activity of commercially available AMPs derived from the skin of multiple taxa, including amphibians, catfish, and humans were compared in order to study immunity at the level of the skin. Additionally, our aim was to create optimal methods for a low-cost antimicrobial-assay protocol that would provide quantitative results. We found that killing abilities at various concentrations of dermaseptin S-1 against Ca ATCC 10231 were consistent with literature values, while our values for magainin 2 and parasin 1 were far from the values previously recorded by other studies. It is possible that some differences can be accounted for by the difference in antimicrobial assay procedures, but our findings suggest potential differences to the well-known killing abilities of certain peptides nonetheless. Overall, the protocol established for the antimicrobial assays using serial dilutions and Sabouraud Dextrose plates was successful.
ContributorsFrazier, Eric (Co-author) / Lake, Alexis M. (Co-author) / Moore, Marianne (Thesis director) / Penton, Christopher (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133503-Thumbnail Image.png
Description
Across large areas of eastern and midwestern North America, a severe reduction in multiple populations of bat species has been observed as the result of the emerging fungal disease, white-nose syndrome (WNS). WNS is caused by a psychrophilic (i.e. cold loving) fungus, Pseudogymnoascus destructans (Pd), that invades the skin of

Across large areas of eastern and midwestern North America, a severe reduction in multiple populations of bat species has been observed as the result of the emerging fungal disease, white-nose syndrome (WNS). WNS is caused by a psychrophilic (i.e. cold loving) fungus, Pseudogymnoascus destructans (Pd), that invades the skin of bats during hibernation. Recent studies have shown that during hibernation, bats have decreased immune system activity which would suggest increased susceptibility to infection. Antimicrobial peptides (AMPs) are an important component of the innate immune system and are expressed constitutively within all tissues that serve as barriers against infection. Killing pathogens at the level of the skin could prevent the need for more complex immune responses likely inhibited during hibernation, and therefore AMPs could be critical in combating infection by Pd and reducing population loss of susceptible bat species. In this investigation, the fungicidal activity of commercially available AMPs derived from the skin of multiple taxa, including amphibians, catfish, and humans were compared in order to study immunity at the level of the skin. Additionally, our aim was to create optimal methods for a low-cost antimicrobial-assay protocol that would provide quantitative results. We found that killing abilities at various concentrations of dermaseptin S-1 against Ca ATCC 10231 were consistent with literature values, while our values for magainin 2 and parasin 1 were far from the values previously recorded by other studies. It is possible that some differences can be accounted for by the difference in antimicrobial assay procedures, but our findings suggest potential differences to the well-known killing abilities of certain peptides nonetheless. Overall, the protocol established for the antimicrobial assays using serial dilutions and Sabouraud Dextrose plates was successful.
ContributorsLake, Alexis (Co-author) / Frazier, Eric (Co-author) / Moore, Marianne (Thesis director) / Penton, Christopher (Committee member) / W.P. Carey School of Business (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05