Matching Items (15)

128539-Thumbnail Image.png

A geometrical approach to control and controllability of nonlinear dynamical networks

Description

In spite of the recent interest and advances in linear controllability of complex networks, controlling nonlinear network dynamics remains an outstanding problem. Here we develop an experimentally feasible control framework

In spite of the recent interest and advances in linear controllability of complex networks, controlling nonlinear network dynamics remains an outstanding problem. Here we develop an experimentally feasible control framework for nonlinear dynamical networks that exhibit multistability. The control objective is to apply parameter perturbation to drive the system from one attractor to another, assuming that the former is undesired and the latter is desired. To make our framework practically meaningful, we consider restricted parameter perturbation by imposing two constraints: it must be experimentally realizable and applied only temporarily. We introduce the concept of attractor network, which allows us to formulate a quantifiable controllability framework for nonlinear dynamical networks: a network is more controllable if the attractor network is more strongly connected. We test our control framework using examples from various models of experimental gene regulatory networks and demonstrate the beneficial role of noise in facilitating control.

Contributors

Agent

Created

Date Created
  • 2016-04-14

128546-Thumbnail Image.png

Extreme events in multilayer, interdependent complex networks and control

Description

We investigate the emergence of extreme events in interdependent networks. We introduce an inter-layer traffic resource competing mechanism to account for the limited capacity associated with distinct network layers. A

We investigate the emergence of extreme events in interdependent networks. We introduce an inter-layer traffic resource competing mechanism to account for the limited capacity associated with distinct network layers. A striking finding is that, when the number of network layers and/or the overlap among the layers are increased, extreme events can emerge in a cascading manner on a global scale. Asymptotically, there are two stable absorption states: a state free of extreme events and a state of full of extreme events, and the transition between them is abrupt. Our results indicate that internal interactions in the multiplex system can yield qualitatively distinct phenomena associated with extreme events that do not occur for independent network layers. An implication is that, e.g., public resource competitions among different service providers can lead to a higher resource requirement than naively expected. We derive an analytical theory to understand the emergence of global-scale extreme events based on the concept of effective betweenness. We also articulate a cost-effective control scheme through increasing the capacity of very few hubs to suppress the cascading process of extreme events so as to protect the entire multi-layer infrastructure against global-scale breakdown.

Contributors

Agent

Created

Date Created
  • 2015-11-27

128549-Thumbnail Image.png

Emergence of multicluster chimera states

Description

A remarkable phenomenon in spatiotemporal dynamical systems is chimera state, where the structurally and dynamically identical oscillators in a coupled networked system spontaneously break into two groups, one exhibiting coherent

A remarkable phenomenon in spatiotemporal dynamical systems is chimera state, where the structurally and dynamically identical oscillators in a coupled networked system spontaneously break into two groups, one exhibiting coherent motion and another incoherent. This phenomenon was typically studied in the setting of non-local coupling configurations. We ask what can happen to chimera states under systematic changes to the network structure when links are removed from the network in an orderly fashion but the local coupling topology remains invariant with respect to an index shift. We find the emergence of multicluster chimera states. Remarkably, as a parameter characterizing the amount of link removal is increased, chimera states of distinct numbers of clusters emerge and persist in different parameter regions. We develop a phenomenological theory, based on enhanced or reduced interactions among oscillators in different spatial groups, to explain why chimera states of certain numbers of clusters occur in certain parameter regions. The theoretical prediction agrees well with numerics.

Contributors

Agent

Created

Date Created
  • 2015-09-09

128554-Thumbnail Image.png

Directed dynamical influence is more detectable with noise

Description

Successful identification of directed dynamical influence in complex systems is relevant to significant problems of current interest. Traditional methods based on Granger causality and transfer entropy have issues such as

Successful identification of directed dynamical influence in complex systems is relevant to significant problems of current interest. Traditional methods based on Granger causality and transfer entropy have issues such as difficulty with nonlinearity and large data requirement. Recently a framework based on nonlinear dynamical analysis was proposed to overcome these difficulties. We find, surprisingly, that noise can counterintuitively enhance the detectability of directed dynamical influence. In fact, intentionally injecting a proper amount of asymmetric noise into the available time series has the unexpected benefit of dramatically increasing confidence in ascertaining the directed dynamical influence in the underlying system. This result is established based on both real data and model time series from nonlinear ecosystems. We develop a physical understanding of the beneficial role of noise in enhancing detection of directed dynamical influence.

Contributors

Agent

Created

Date Created
  • 2016-04-12

128558-Thumbnail Image.png

Controlling herding in minority game systems

Description

Resource allocation takes place in various types of real-world complex systems such as urban traffic, social services institutions, economical and ecosystems. Mathematically, the dynamical process of resource allocation can be

Resource allocation takes place in various types of real-world complex systems such as urban traffic, social services institutions, economical and ecosystems. Mathematically, the dynamical process of resource allocation can be modeled as minority games. Spontaneous evolution of the resource allocation dynamics, however, often leads to a harmful herding behavior accompanied by strong fluctuations in which a large majority of agents crowd temporarily for a few resources, leaving many others unused. Developing effective control methods to suppress and eliminate herding is an important but open problem. Here we develop a pinning control method, that the fluctuations of the system consist of intrinsic and systematic components allows us to design a control scheme with separated control variables. A striking finding is the universal existence of an optimal pinning fraction to minimize the variance of the system, regardless of the pinning patterns and the network topology. We carry out a generally applicable theory to explain the emergence of optimal pinning and to predict the dependence of the optimal pinning fraction on the network topology. Our work represents a general framework to deal with the broader problem of controlling collective dynamics in complex systems with potential applications in social, economical and political systems.

Contributors

Agent

Created

Date Created
  • 2016-02-17

129561-Thumbnail Image.png

Controlling extreme events on complex networks

Description

Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and

Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network “mobile” can effectively suppress extreme events. A striking, resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding to current areas such as cybersecurity are discussed.

Contributors

Agent

Created

Date Created
  • 2014-08-18

129477-Thumbnail Image.png

Mesoscopic Interactions and Species Coexistence in Evolutionary Game Dynamics of Cyclic Competitions

Description

Evolutionary dynamical models for cyclic competitions of three species (e.g., rock, paper, and scissors, or RPS) provide a paradigm, at the microscopic level of individual interactions, to address many issues

Evolutionary dynamical models for cyclic competitions of three species (e.g., rock, paper, and scissors, or RPS) provide a paradigm, at the microscopic level of individual interactions, to address many issues in coexistence and biodiversity. Real ecosystems often involve competitions among more than three species. By extending the RPS game model to five (rock-paper-scissors-lizard-Spock, or RPSLS) mobile species, we uncover a fundamental type of mesoscopic interactions among subgroups of species. In particular, competitions at the microscopic level lead to the emergence of various local groups in different regions of the space, each involving three species. It is the interactions among the groups that fundamentally determine how many species can coexist. In fact, as the mobility is increased from zero, two transitions can occur: one from a five- to a three-species coexistence state and another from the latter to a uniform, single-species state. We develop a mean-field theory to show that, in order to understand the first transition, group interactions at the mesoscopic scale must be taken into account. Our findings suggest, more broadly, the importance of mesoscopic interactions in coexistence of great many species.

Contributors

Agent

Created

Date Created
  • 2014-12-15

129524-Thumbnail Image.png

Universal flux-fluctuation law in small systems

Description

The relation between flux and fluctuation is fundamental to complex physical systems that support and transport flows. A recently obtained law predicts monotonous enhancement of fluctuation as the average flux

The relation between flux and fluctuation is fundamental to complex physical systems that support and transport flows. A recently obtained law predicts monotonous enhancement of fluctuation as the average flux is increased, which in principle is valid but only for large systems. For realistic complex systems of small sizes, this law breaks down when both the average flux and fluctuation become large. Here we demonstrate the failure of this law in small systems using real data and model complex networked systems, derive analytically a modified flux-fluctuation law, and validate it through computations of a large number of complex networked systems. Our law is more general in that its predictions agree with numerics and it reduces naturally to the previous law in the limit of large system size, leading to new insights into the flow dynamics in small-size complex systems with significant implications for the statistical and scaling behaviors of small systems, a topic of great recent interest.

Contributors

Agent

Created

Date Created
  • 2014-10-27

129233-Thumbnail Image.png

Complex behavior of chaotic synchronization under dual coupling channels

Description

Most previous works on complete synchronization of chaotic oscillators focused on the one-channel interaction scheme where the oscillators are coupled through only one variable or a symmetric set of variables.

Most previous works on complete synchronization of chaotic oscillators focused on the one-channel interaction scheme where the oscillators are coupled through only one variable or a symmetric set of variables. Using the standard framework of master-stability function (MSF), we investigate the emergence of complex synchronization behaviors under all possible configurations of two-channel coupling, which include, for example, all possible cross coupling schemes among the dynamical variables. Utilizing the classic Rössler and Lorenz oscillators, we find a rich variety of synchronization phenomena not present in any previously extensively studied, single-channel coupling configurations. For example, in many cases two coupling channels can enhance or even generate synchronization where there is only weak or no synchronization under only one coupling channel, which has been verified in a coupled neuron system. There are also cases where the oscillators are originally synchronized under one coupling channel, but an additional synchronizable coupling channel can, however, destroy synchronization. Direct numerical simulations of actual synchronization dynamics verify the MSF-based predictions. Our extensive computation and heuristic analysis provide an atlas for synchronization of chaotic oscillators coupled through two channels, which can be used as a systematic reference to facilitate further research in this area.

Contributors

Agent

Created

Date Created
  • 2015-02-18

Spatiotemporal Patterns and Predictability of Cyberattacks

Description

A relatively unexplored issue in cybersecurity science and engineering is whether there exist intrinsic patterns of cyberattacks. Conventional wisdom favors absence of such patterns due to the overwhelming complexity of

A relatively unexplored issue in cybersecurity science and engineering is whether there exist intrinsic patterns of cyberattacks. Conventional wisdom favors absence of such patterns due to the overwhelming complexity of the modern cyberspace. Surprisingly, through a detailed analysis of an extensive data set that records the time-dependent frequencies of attacks over a relatively wide range of consecutive IP addresses, we successfully uncover intrinsic spatiotemporal patterns underlying cyberattacks, where the term “spatio” refers to the IP address space. In particular, we focus on analyzing macroscopic properties of the attack traffic flows and identify two main patterns with distinct spatiotemporal characteristics: deterministic and stochastic. Strikingly, there are very few sets of major attackers committing almost all the attacks, since their attack “fingerprints” and target selection scheme can be unequivocally identified according to the very limited number of unique spatiotemporal characteristics, each of which only exists on a consecutive IP region and differs significantly from the others. We utilize a number of quantitative measures, including the flux-fluctuation law, the Markov state transition probability matrix, and predictability measures, to characterize the attack patterns in a comprehensive manner. A general finding is that the attack patterns possess high degrees of predictability, potentially paving the way to anticipating and, consequently, mitigating or even preventing large-scale cyberattacks using macroscopic approaches.

Contributors

Agent

Created

Date Created
  • 2015-05-20