Matching Items (105)
156187-Thumbnail Image.png
Description
This thesis focuses on studying the interaction between floating objects and an air-water flow system driven by gravity. The system consists of an inclined channel in which a gravity driven two phase flow carries a series of floating solid objects downstream. Numerical simulations of such a system requires the solution

This thesis focuses on studying the interaction between floating objects and an air-water flow system driven by gravity. The system consists of an inclined channel in which a gravity driven two phase flow carries a series of floating solid objects downstream. Numerical simulations of such a system requires the solution of not only the basic Navier-Stokes equation but also dynamic interaction between the solid body and the two-phase flow. In particular, this requires embedding of dynamic mesh within the two-phase flow. A computational fluid dynamics solver, ANSYS fluent, is used to solve this problem. Also, the individual components for these simulations are already available in the solver, few examples exist in which all are combined. A series of simulations are performed by varying the key parameters, including density of floating objects and mass flow rate at the inlet. The motion of the floating objects in those simulations are analyzed to determine the stability of the coupled flow-solid system. The simulations are successfully performed over a broad range of parametric values. The numerical framework developed in this study can potentially be used in applications, especially in assisting the design of similar gravity driven systems for transportation in manufacturing processes. In a small number of the simulations, two kinds of numerically instability are observed. One is characterized by a sudden vertical acceleration of the floating object due to a strong imbalance of the force acting on the body, which occurs when the mass flow of water is weak. The other is characterized by a sudden vertical movement of air-water interface, which occurs when two floating objects become too close together. These new types of numerical instability deserve future studies and clarifications. This study is performed only for a 2-D system. Extension of the numerical framework to a full 3-D setting is recommended as future work.
ContributorsMangavelli, Sai Chaitanya (Author) / Huang, Huei-Ping (Thesis advisor) / Kim, Jeonglae (Committee member) / Forzani, Erica (Committee member) / Arizona State University (Publisher)
Created2018
Description
This thesis focuses on an improved understanding of the dynamics at different length scales of wind farms in an atmospheric boundary layer (ABL) using a series of visualization studies and Fourier, wavelet based spectral analysis using high fidelity large eddy simulation (LES). For this purpose, a robust LES based neutral

This thesis focuses on an improved understanding of the dynamics at different length scales of wind farms in an atmospheric boundary layer (ABL) using a series of visualization studies and Fourier, wavelet based spectral analysis using high fidelity large eddy simulation (LES). For this purpose, a robust LES based neutral ABL model at very high Reynolds number has been developed using a high order spectral element method which has been validated against the previous literature. This ABL methodology has been used as a building block to drive large wind turbine arrays or wind farms residing inside the boundary layer as documented in the subsequent work. Studies conducted in the thesis involving massive periodic wind farms with neutral ABL have indicated towards the presence of large scale coherent structures that contribute to the power generated by the wind turbines via downdraft mechanisms which are also responsible for the modulation of near wall dynamics. This key idea about the modulation of large scales have seen a lot of promise in the application of flow past vertically staggered wind farms with turbines at different scales. Eventually, studies involving wind farms have been progressively evolved in a framework of inflow-outflow where the turbulent inflow is being fed from the precursor ABL using a spectral interpolation technique. This methodology has been used to enhance the understanding related to the multiscale physics of wind farm ABL interaction, where phenomenon like the growth of the inner layer, and wake impingement effects in the subsequent rows of wind turbines are important owing to the streamwise heterogeneity of the flow. Finally, the presence of realistic geophysical effects in the turbulent inflow have been investigated that influence the flow past the wind turbine arrays. Some of the geophysical effects that have been considered include the presence of the Coriolis forces as well as the temporal variation of mean wind magnitude and direction that might occur due to mesoscale dynamics. This study has been compared against field experimental results which provides an important step towards understanding the capability of the mean data driven LES methodology in predicting realistic flow structures.
ContributorsChatterjee, Tanmoy (Author) / Peet, Yulia T. (Thesis advisor) / Adrian, Ronald J. (Committee member) / Calhoun, Ronald J. (Committee member) / Huang, Huei-Ping (Committee member) / Moustaoui, Mohamed (Committee member) / Arizona State University (Publisher)
Created2018
156327-Thumbnail Image.png
Description
Energy production is driven by economic needs, which sometimes results in the environment and wildlife being an afterthought. Unfortunately, many animals are killed as a result of flying too close to wind turbines, and the addition of animal deterrent devices are a promising alternative. This thesis seeks to provide a

Energy production is driven by economic needs, which sometimes results in the environment and wildlife being an afterthought. Unfortunately, many animals are killed as a result of flying too close to wind turbines, and the addition of animal deterrent devices are a promising alternative. This thesis seeks to provide a solution as a part of post- construction considerations regarding wildlife and wind turbine interactions through the introduction of a blade mounted ecological device. After testing the hypothesis, the data revealed the device is effective for increasing power output when placed at the root, middle, and tip of the blade. The middle position yielded the lowest increase at all speeds tested. The device was designed and attached to blades along the estimated line of separation. The blades were then mounted on a tower and tested with wind speed as an input and power as an output. The data was analyzed by fixing speed as a parameter and then looking at the distribution of the power output data. A comparison of blades with and without the device demonstrates a potential for increasing power output by 144% when the device is attached at the blade’s root, 7.5% in the middle, and 21% near the tip. The analysis for this study was descoped due to the constraints of the system to be scaled up. As such, this analysis will hold for turbines with a blade length of no more than approximately eight feet. Blades of this type would be used in single building energy grid supplement turbines or turbines in areas with power requirements of equal or less than 1kW per turbine installed. Single building energy grid supplement turbines are most often mounted to the tops of buildings and take advantage of higher speeds of wind at those heights. As the ecological devices are designed to be similar to vortex generators, which have been tested on large blades, their addition to large blades could prove to have a similar effect.

Keywords: Wind turbine ecosystem, post-construction turbine considerations, wildlife deterrents
ContributorsBooth, Stephanie (Author) / Trimble, Steve (Thesis advisor) / Middleton, James (Thesis advisor) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2018
156245-Thumbnail Image.png
Description
Liquid injection in cross flows has applications in gas-turbine engines, afterburners and some rocket combustion chambers. Integral form of the conservation equations has been used to find a cubic formula for the drop size in liquid sprays in cross flows. Similar to the work on axial liquid sprays, the energy

Liquid injection in cross flows has applications in gas-turbine engines, afterburners and some rocket combustion chambers. Integral form of the conservation equations has been used to find a cubic formula for the drop size in liquid sprays in cross flows. Similar to the work on axial liquid sprays, the energy balance dictates that the initial kinetic energy of the gas and injected liquid be distributed into the final surface tension energy, kinetic energy of the gas and droplets, and viscous dissipation incurred. Kinetic energy of the cross flow is added to the energy balance. Then, only the viscous dissipation term needs to be phenomenologically modelled. The mass and energy balance for the spray flows renders to an expression that relates the drop size to all of the relevant parameters, including the gas- and liquid-phase velocities. The results agree well with experimental data and correlations for the drop size. The solution also provides for drop size-velocity cross-correlation, leading to drop size distributions based on the gas-phase velocity distribution. These aspects can be used in estimating the drop size for practical applications, and also in computational simulations of liquid injection in cross flows, and in other spray geometries in general.
ContributorsPark, Jung Eun (Author) / Lee, Taewoo (Thesis advisor) / Huang, Huei-Ping (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2018
156167-Thumbnail Image.png
Description
Membrane filtration is an important technology in industry. In the past few decades, equations have been developed from experimental results to predict cake formation and permeate flux decline in the membrane filtration process. In the current work, the block of particles on membrane surface is achieved by setting surface flux

Membrane filtration is an important technology in industry. In the past few decades, equations have been developed from experimental results to predict cake formation and permeate flux decline in the membrane filtration process. In the current work, the block of particles on membrane surface is achieved by setting surface flux on membrane surface zero. This approach is implemented for both microfiltration and nanofiltration using OpenFOAM. Moreover, a new method to deal with cake resistance for nanofiltration is introduced. Cake resistance is applied to both cake and membrane. To validate the new techniques, results of crossflow microfiltration are compared to theoretical results and results of two crossflow nanofiltration cases are compared to experimental data. In addition, the new techniques are applied to dead end filtration to observe the different structure of the cake and explore the effect of resistance on velocity profile.
ContributorsHu, Jueming (Author) / Herrmann, Marcus (Thesis advisor) / Huang, Huei-Ping (Committee member) / Lee, Taewoo (Committee member) / Arizona State University (Publisher)
Created2018
Description
Over the past three decades, particle image velocimetry (PIV) has been continuously growing to become an informative and robust experimental tool for fluid mechanics research. Compared to the early stage of PIV development, the dynamic range of PIV has been improved by about an order of magnitude (Adrian, 2005; Westerweel

Over the past three decades, particle image velocimetry (PIV) has been continuously growing to become an informative and robust experimental tool for fluid mechanics research. Compared to the early stage of PIV development, the dynamic range of PIV has been improved by about an order of magnitude (Adrian, 2005; Westerweel et al., 2013). Further improvement requires a breakthrough innovation, which constitutes the main motivation of this dissertation. N-pulse particle image velocimetry-accelerometry (N-pulse PIVA, where N>=3) is a promising technique to this regard. It employs bursts of N pulses to gain advantages in both spatial and temporal resolution. The performance improvement by N-pulse PIVA is studied using particle tracking (i.e. N-pulse PTVA), and it is shown that an enhancement of at least another order of magnitude is achievable. Furthermore, the capability of N-pulse PIVA to measure unsteady acceleration and force is demonstrated in the context of an oscillating cylinder interacting with surrounding fluid. The cylinder motion, the fluid velocity and acceleration, and the fluid force exerted on the cylinder are successfully measured. On the other hand, a key issue of multi-camera registration for the implementation of N-pulse PIVA is addressed with an accuracy of 0.001 pixel. Subsequently, two applications of N-pulse PTVA to complex flows and turbulence are presented. A novel 8-pulse PTVA analysis was developed and validated to accurately resolve particle unsteady drag in post-shock flows. It is found that the particle drag is substantially elevated from the standard drag due to flow unsteadiness, and a new drag correlation incorporating particle Reynolds number and unsteadiness is desired upon removal of the uncertainty arising from non-uniform particle size. Next, the estimation of turbulence statistics utilizes the ensemble average of 4-pulse PTV data within a small domain of an optimally determined size. The estimation of mean velocity, mean velocity gradient and isotropic dissipation rate are presented and discussed by means of synthetic turbulence, as well as a tomographic measurement of turbulent boundary layer. The results indicate the superior capability of the N-pulse PTV based method to extract high-spatial-resolution high-accuracy turbulence statistics.
ContributorsDing, Liuyang (Author) / Adrian, Ronald J (Thesis advisor) / Frakes, David (Committee member) / Herrmann, Marcus (Committee member) / Huang, Huei-Ping (Committee member) / Peet, Yulia (Committee member) / Arizona State University (Publisher)
Created2018
157354-Thumbnail Image.png
Description
The residential building sector accounts for more than 26% of the global energy consumption and 17% of global CO2 emissions. Due to the low cost of electricity in Kuwait and increase of population, Kuwaiti electricity consumption tripled during the past 30 years and is expected to increase by 20% by

The residential building sector accounts for more than 26% of the global energy consumption and 17% of global CO2 emissions. Due to the low cost of electricity in Kuwait and increase of population, Kuwaiti electricity consumption tripled during the past 30 years and is expected to increase by 20% by 2027. In this dissertation, a framework is developed to assess energy savings techniques to help policy-makers make educated decisions. The Kuwait residential energy outlook is studied by modeling the baseline energy consumption and the diffusion of energy conservation measures (ECMs) to identify the impacts on household energy consumption and CO2 emissions.



The energy resources and power generation in Kuwait were studied. The characteristics of the residential buildings along with energy codes of practice were investigated and four building archetypes were developed. Moreover, a baseline of end-use electricity consumption and demand was developed. Furthermore, the baseline energy consumption and demand were projected till 2040. It was found that by 2040, energy consumption would double with most of the usage being from AC. While with lighting, there is a negligible increase in consumption due to a projected shift towards more efficient lighting. Peak demand loads are expected to increase by an average growth rate of 2.9% per year. Moreover, the diffusion of different ECMs in the residential sector was modeled through four diffusion scenarios to estimate ECM adoption rates. ECMs’ impact on CO2 emissions and energy consumption of residential buildings in Kuwait was evaluated and the cost of conserved energy (CCE) and annual energy savings for each measure was calculated. AC ECMs exhibited the highest cumulative savings, whereas lighting ECMs showed an immediate energy impact. None of the ECMs in the study were cost effective due to the high subsidy rate (95%), therefore, the impact of ECMs at different subsidy and rebate rates was studied. At 75% subsidized utility price and 40% rebate only on appliances, most of ECMs will be cost effective with high energy savings. Moreover, by imposing charges of $35/ton of CO2, most ECMs will be cost effective.
ContributorsAlajmi, Turki (Author) / Phelan, Patrick E (Thesis advisor) / Kaloush, Kamil (Committee member) / Huang, Huei-Ping (Committee member) / Wang, Liping (Committee member) / Hajiah, Ali (Committee member) / Arizona State University (Publisher)
Created2019
157173-Thumbnail Image.png
Description
Understanding and predicting climate changes at the urban scale have been an important yet challenging problem in environmental engineering. The lack of reliable long-term observations at the urban scale makes it difficult to even assess past climate changes. Numerical modeling plays an important role in filling the gap of observation

Understanding and predicting climate changes at the urban scale have been an important yet challenging problem in environmental engineering. The lack of reliable long-term observations at the urban scale makes it difficult to even assess past climate changes. Numerical modeling plays an important role in filling the gap of observation and predicting future changes. Numerical studies on the climatic effect of desert urbanization have focused on basic meteorological fields such as temperature and wind. For desert cities, urban expansion can lead to substantial changes in the local production of wind-blown dust, which have implications for air quality and public health. This study expands the existing framework of numerical simulation for desert urbanization to include the computation of dust generation related to urban land-use changes. This is accomplished by connecting a suite of numerical models, including a meso-scale meteorological model, a land-surface model, an urban canopy model, and a turbulence model, to produce the key parameters that control the surface fluxes of wind-blown dust. Those models generate the near-surface turbulence intensity, soil moisture, and land-surface properties, which are used to determine the dust fluxes from a set of laboratory-based empirical formulas. This framework is applied to a series of simulations for the desert city of Erbil across a period of rapid urbanization. The changes in surface dust fluxes associated with urbanization are quantified. An analysis of the model output further reveals the dependence of surface dust fluxes on local meteorological conditions. Future applications of the models to environmental prediction are discussed.
ContributorsTahir, Sherzad Tahseen (Author) / Huang, Huei-Ping (Thesis advisor) / Phelan, Patrick (Committee member) / Herrmann, Marcus (Committee member) / Chen, Kangping (Committee member) / Clarke, Amanda (Committee member) / Arizona State University (Publisher)
Created2019
157125-Thumbnail Image.png
Description
This study identifies the influence that leading-edge shape has on the aerodynamic characteristics of a wing using surface far-field and near-field analysis. It examines if a wake survey is the appropriate means for measuring profile drag and induced drag. The paper unveils the differences between sharp leading-edge and blunt leading-edge

This study identifies the influence that leading-edge shape has on the aerodynamic characteristics of a wing using surface far-field and near-field analysis. It examines if a wake survey is the appropriate means for measuring profile drag and induced drag. The paper unveils the differences between sharp leading-edge and blunt leading-edge wings with the tools of pressure loop, chordwise pressure distribution, span load plots and with wake integral computations. The analysis was performed using Computational Fluid Dynamics (CFD), vortex lattice potential flow code (VORLAX), and a few wind-tunnels runs to acquire data for comparison. This study found that sharp leading-edge wings have less leading-edge suction and higher drag than blunt leading-edge wings.

The blunt leading-edge wings have less drag because the normal vector of the surface in the front section of the airfoil develops forces at opposed skin friction. The shape of the leading edge, in conjunction with the effect of viscosity, slightly alter the span load; both the magnitude of the lift and the transverse distribution. Another goal in this study is to verify the veracity of wake survey theory; the two different leading-edge shapes reveals the shortcoming of Mclean’s equation which is only applicable to blunt leading-edge wings.
ContributorsOu, Che Wei (Author) / Takahashi, Timothy (Thesis advisor) / Herrmann, Marcus (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2019
Description
The goal of this paper was to do an analysis of two-dimensional unsplit mass and momentum conserving Finite Volume Methods for Advection for Volume of Fluid Fields with interfaces and validating their rates of convergence. Specifically three unsplit transport methods and one split transport method were amalgamated individually with four

The goal of this paper was to do an analysis of two-dimensional unsplit mass and momentum conserving Finite Volume Methods for Advection for Volume of Fluid Fields with interfaces and validating their rates of convergence. Specifically three unsplit transport methods and one split transport method were amalgamated individually with four Piece-wise Linear Reconstruction Schemes (PLIC) i.e. Unsplit Eulerian Advection (UEA) by Owkes and Desjardins (2014), Unsplit Lagrangian Advection (ULA) by Yang et al. (2010), Split Lagrangian Advection (SLA) by Scardovelli and Zaleski (2003) and Unsplit Averaged Eulerian-Lagrangian Advection (UAELA) with two Finite Difference Methods by Parker and Youngs (1992) and two Error Minimization Methods by Pilliod Jr and Puckett (2004). The observed order of accuracy was first order in all cases except when unsplit methods and error minimization methods were used consecutively in each iteration, which resulted in second-order accuracy on the shape error convergence. The Averaged Unsplit Eulerian-Lagrangian Advection (AUELA) did produce first-order accuracy but that was due to a temporal error in the numerical setup. The main unsplit methods, Unsplit Eulerian Advection (UEA) and Unsplit Lagrangian Advection (ULA), preserve mass and momentum and require geometric clipping to solve two-phase fluid flows. The Unsplit Lagrangian Advection (ULA) can allow for small divergence in the velocity field perhaps saving time on the iterative solver of the variable coefficient Poisson System.
ContributorsAnsari, Adil (M.S.) (Author) / Herrmann, Marcus (Thesis advisor) / Peet, Yulia (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2019