Matching Items (20)

134971-Thumbnail Image.png

Harnessing Digital Footprints From Paper-based Assessments: An Investigation on Students' Reviewing Behavior

Description

This thesis investigates students' learning behaviors through their interaction with an educational technology, Web Programming Grading Assistant. The technology was developed to facilitate the grading of paper-based examinations in large

This thesis investigates students' learning behaviors through their interaction with an educational technology, Web Programming Grading Assistant. The technology was developed to facilitate the grading of paper-based examinations in large lecture-based classrooms and to provide richer and more meaningful feedback to students. A classroom study was designed and data was gathered from an undergraduate computer-programming course in the fall of 2016. Analysis of the data revealed that there was a negative correlation between time lag of first review attempt and performance. A survey was developed and disseminated that gave insight into how students felt about the technology and what they normally do to study for programming exams. In conclusion, the knowledge gained in this study aids in the quest to better educate students in computer programming in large in-person classrooms.

Contributors

Created

Date Created
  • 2017-05

158831-Thumbnail Image.png

Automatic Classification of Small Group Dynamics using Speech and Collaborative Writing

Description

Students seldom spontaneously collaborate with each other. A system that can measure collaboration in real time could be useful, for example, by helping the teacher locate a group requiring guidance.

Students seldom spontaneously collaborate with each other. A system that can measure collaboration in real time could be useful, for example, by helping the teacher locate a group requiring guidance. To address this challenge, the research presented here focuses on building and comparing collaboration detectors for different types of classroom problem solving activities, such as card sorting and handwriting.

Transfer learning using different representations was also studied with a goal of building collaboration detectors for one task can be used with a new task. Data for building such detectors were collected in the form of verbal interaction and user action logs from students’ tablets. Three qualitative levels of interactivity were distinguished: Collaboration, Cooperation and Asymmetric Contribution. Machine learning was used to induce a classifier that can assign a code for every episode based on the set of features. The results indicate that machine learned classifiers were reliable and can transfer.

Contributors

Agent

Created

Date Created
  • 2020

157174-Thumbnail Image.png

Cost-Sensitive Selective Classification and its Applications to Online Fraud Management

Description

Fraud is defined as the utilization of deception for illegal gain by hiding the true nature of the activity. While organizations lose around $3.7 trillion in revenue due to financial

Fraud is defined as the utilization of deception for illegal gain by hiding the true nature of the activity. While organizations lose around $3.7 trillion in revenue due to financial crimes and fraud worldwide, they can affect all levels of society significantly. In this dissertation, I focus on credit card fraud in online transactions. Every online transaction comes with a fraud risk and it is the merchant's liability to detect and stop fraudulent transactions. Merchants utilize various mechanisms to prevent and manage fraud such as automated fraud detection systems and manual transaction reviews by expert fraud analysts. Many proposed solutions mostly focus on fraud detection accuracy and ignore financial considerations. Also, the highly effective manual review process is overlooked. First, I propose Profit Optimizing Neural Risk Manager (PONRM), a selective classifier that (a) constitutes optimal collaboration between machine learning models and human expertise under industrial constraints, (b) is cost and profit sensitive. I suggest directions on how to characterize fraudulent behavior and assess the risk of a transaction. I show that my framework outperforms cost-sensitive and cost-insensitive baselines on three real-world merchant datasets. While PONRM is able to work with many supervised learners and obtain convincing results, utilizing probability outputs directly from the trained model itself can pose problems, especially in deep learning as softmax output is not a true uncertainty measure. This phenomenon, and the wide and rapid adoption of deep learning by practitioners brought unintended consequences in many situations such as in the infamous case of Google Photos' racist image recognition algorithm; thus, necessitated the utilization of the quantified uncertainty for each prediction. There have been recent efforts towards quantifying uncertainty in conventional deep learning methods (e.g., dropout as Bayesian approximation); however, their optimal use in decision making is often overlooked and understudied. Thus, I present a mixed-integer programming framework for selective classification called MIPSC, that investigates and combines model uncertainty and predictive mean to identify optimal classification and rejection regions. I also extend this framework to cost-sensitive settings (MIPCSC) and focus on the critical real-world problem, online fraud management and show that my approach outperforms industry standard methods significantly for online fraud management in real-world settings.

Contributors

Agent

Created

Date Created
  • 2019

157028-Thumbnail Image.png

Predicting and Interpreting Students Performance using Supervised Learning and Shapley Additive Explanations

Description

Due to large data resources generated by online educational applications, Educational Data Mining (EDM) has improved learning effects in different ways: Students Visualization, Recommendations for students, Students Modeling, Grouping Students,

Due to large data resources generated by online educational applications, Educational Data Mining (EDM) has improved learning effects in different ways: Students Visualization, Recommendations for students, Students Modeling, Grouping Students, etc. A lot of programming assignments have the features like automating submissions, examining the test cases to verify the correctness, but limited studies compared different statistical techniques with latest frameworks, and interpreted models in a unified approach.

In this thesis, several data mining algorithms have been applied to analyze students’ code assignment submission data from a real classroom study. The goal of this work is to explore

and predict students’ performances. Multiple machine learning models and the model accuracy were evaluated based on the Shapley Additive Explanation.

The Cross-Validation shows the Gradient Boosting Decision Tree has the best precision 85.93% with average 82.90%. Features like Component grade, Due Date, Submission Times have higher impact than others. Baseline model received lower precision due to lack of non-linear fitting.

Contributors

Agent

Created

Date Created
  • 2019

Roblocks: An Educational System for AI Planning and Reasoning

Description

This research introduces Roblocks, a user-friendly system for learning Artificial Intelligence (AI) planning concepts using mobile manipulator robots. It uses a visual programming interface based on block-structured programming to make

This research introduces Roblocks, a user-friendly system for learning Artificial Intelligence (AI) planning concepts using mobile manipulator robots. It uses a visual programming interface based on block-structured programming to make AI planning concepts easier to grasp for those who are new to robotics and AI planning. Users get to accomplish any desired tasks by dynamically populating puzzle shaped blocks encoding the robot’s possible actions, allowing them to carry out tasks like navigation, planning, and manipulation by connecting blocks instead of writing code. Roblocks has two levels, where in the first level users are made to re-arrange a jumbled set of actions of a plan in the correct order so that a given goal could be achieved. In the second level, they select actions of their choice but at each step only those actions pertaining to the current state are made available to them, thereby pruning down the vast number of possible actions and suggesting only the truly feasible and relevant actions. Both of these levels have a simulation where the user plan is executed. Moreover, if the user plan is invalid or fails to achieve the given goal condition then an explanation for the failure is provided in simple English language. This makes it easier for everyone (especially for non-roboticists) to understand the cause of the failure.

Contributors

Agent

Created

Date Created
  • 2019

154101-Thumbnail Image.png

Identifying relevant interaction metrics for predicting student performance in a generic learning content management system

Description

The growing use of Learning Management Systems (LMS) in classrooms has enabled a great amount of data to be collected about the study behavior of students. Previously, research has been

The growing use of Learning Management Systems (LMS) in classrooms has enabled a great amount of data to be collected about the study behavior of students. Previously, research has been conducted to interpret the collected LMS usage data in order to find the most effective study habits for students. Professors can then use the interpretations to predict which students will perform well and which student will perform poorly in the rest of the course, allowing the professor to better provide assistance to students in need. However, these research attempts have largely analyzed metrics that are specific to certain graphical interfaces, ways of answering questions, or specific pages on an LMS. As a result, the analysis is only relevant to classrooms that use the specific LMS being analyzed.

For this thesis, behavior metrics obtained by the Organic Practice Environment (OPE) LMS at Arizona State University were compared to student performance in Dr. Ian Gould’s Organic Chemistry I course. Each metric gathered was generic enough to be potentially used by any LMS, allowing the results to be relevant to a larger amount of classrooms. By using a combination of bivariate correlation analysis, group mean comparisons, linear regression model generation, and outlier analysis, the metrics that correlate best to exam performance were identified. The results indicate that the total usage of the LMS, amount of cramming done before exams, correctness of the responses submitted, and duration of the responses submitted all demonstrate a strong correlation with exam scores.

Contributors

Agent

Created

Date Created
  • 2015

154120-Thumbnail Image.png

SearchViz: an interactive visual interface to navigate search-results in online discussion forums

Description

Online programming communities are widely used by programmers for troubleshooting or various problem solving tasks. Large and ever increasing volume of posts on these communities demands more efforts to read

Online programming communities are widely used by programmers for troubleshooting or various problem solving tasks. Large and ever increasing volume of posts on these communities demands more efforts to read and comprehend thus making it harder to find relevant information. In my thesis; I designed and studied an alternate approach by using interactive network visualization to represent relevant search results for online programming discussion forums.

I conducted user study to evaluate the effectiveness of this approach. Results show that users were able to identify relevant information more precisely via visual interface as compared to traditional list based approach. Network visualization demonstrated effective search-result navigation support to facilitate user’s tasks and improved query quality for successive queries. Subjective evaluation also showed that visualizing search results conveys more semantic information in efficient manner and makes searching more effective.

Contributors

Agent

Created

Date Created
  • 2015

154146-Thumbnail Image.png

Biology question generation from a semantic network

Description

Science instructors need questions for use in exams, homework assignments, class discussions, reviews, and other instructional activities. Textbooks never have enough questions, so instructors must find them from other

Science instructors need questions for use in exams, homework assignments, class discussions, reviews, and other instructional activities. Textbooks never have enough questions, so instructors must find them from other sources or generate their own questions. In order to supply instructors with biology questions, a semantic network approach was developed for generating open response biology questions. The generated questions were compared to professional authorized questions.

To boost students’ learning experience, adaptive selection was built on the generated questions. Bayesian Knowledge Tracing was used as embedded assessment of the student’s current competence so that a suitable question could be selected based on the student’s previous performance. A between-subjects experiment with 42 participants was performed, where half of the participants studied with adaptive selected questions and the rest studied with mal-adaptive order of questions. Both groups significantly improved their test scores, and the participants in adaptive group registered larger learning gains than participants in the control group.

To explore the possibility of generating rich instructional feedback for machine-generated questions, a question-paragraph mapping task was identified. Given a set of questions and a list of paragraphs for a textbook, the goal of the task was to map the related paragraphs to each question. An algorithm was developed whose performance was comparable to human annotators.

A multiple-choice question with high quality distractors (incorrect answers) can be pedagogically valuable as well as being much easier to grade than open-response questions. Thus, an algorithm was developed to generate good distractors for multiple-choice questions. The machine-generated multiple-choice questions were compared to human-generated questions in terms of three measures: question difficulty, question discrimination and distractor usefulness. By recruiting 200 participants from Amazon Mechanical Turk, it turned out that the two types of questions performed very closely on all the three measures.

Contributors

Agent

Created

Date Created
  • 2015

158399-Thumbnail Image.png

Towards Building an Intelligent Tutor for Gestural Languages using Concept Level Explainable AI

Description

Languages, specially gestural and sign languages, are best learned in immersive environments with rich feedback. Computer-Aided Language Learning (CALL) solu- tions for spoken languages have successfully incorporated some feedback mechanisms,

Languages, specially gestural and sign languages, are best learned in immersive environments with rich feedback. Computer-Aided Language Learning (CALL) solu- tions for spoken languages have successfully incorporated some feedback mechanisms, but no such solution exists for signed languages. Computer Aided Sign Language Learning (CASLL) is a recent and promising field of research which is made feasible by advances in Computer Vision and Sign Language Recognition(SLR). Leveraging existing SLR systems for feedback based learning is not feasible because their decision processes are not human interpretable and do not facilitate conceptual feedback to learners. Thus, fundamental research is needed towards designing systems that are modular and explainable. The explanations from these systems can then be used to produce feedback to aid in the learning process.

In this work, I present novel approaches for the recognition of location, movement and handshape that are components of American Sign Language (ASL) using both wrist-worn sensors as well as webcams. Finally, I present Learn2Sign(L2S), a chat- bot based AI tutor that can provide fine-grained conceptual feedback to learners of ASL using the modular recognition approaches. L2S is designed to provide feedback directly relating to the fundamental concepts of ASL using an explainable AI. I present the system performance results in terms of Precision, Recall and F-1 scores as well as validation results towards the learning outcomes of users. Both retention and execution tests for 26 participants for 14 different ASL words learned using learn2sign is presented. Finally, I also present the results of a post-usage usability survey for all the participants. In this work, I found that learners who received live feedback on their executions improved their execution as well as retention performances. The average increase in execution performance was 28% points and that for retention was 4% points.

Contributors

Agent

Created

Date Created
  • 2020

155764-Thumbnail Image.png

Detecting Organizational Accounts from Twitter Based on Network and Behavioral Factors

Description

With the rise of Online Social Networks (OSN) in the last decade, social network analysis has become a crucial research topic. The OSN graphs have unique properties that distinguish them

With the rise of Online Social Networks (OSN) in the last decade, social network analysis has become a crucial research topic. The OSN graphs have unique properties that distinguish them from other types of graphs. In this thesis, five month Tweet corpus collected from Bangladesh - between June 2016 and October 2016 is analyzed, in order to detect accounts that belong to groups. These groups consist of official and non-official twitter handles of political organizations and NGOs in Bangladesh. A set of network, temporal, spatial and behavioral features are proposed to discriminate between accounts belonging to individual twitter users, news, groups and organization leaders. Finally, the experimental results are presented and a subset of relevant features is identified that lead to a generalizable model. Detection of tiny number of groups from large network is achieved with 0.8 precision, 0.75 recall and 0.77 F1 score. The domain independent network and behavioral features and models developed here are suitable for solving twitter account classification problem in any context.

Contributors

Agent

Created

Date Created
  • 2017