Matching Items (1,530)
Filtering by

Clear all filters

132654-Thumbnail Image.png
Description
The entirely soft-tissue anatomy of the octopus arm provides the animal with a large amount of freedom of movement, while still allowing the specimen to support itself despite the lack of a skeletal system. This is made possible through the use of various muscle layers within the octopus arm, which

The entirely soft-tissue anatomy of the octopus arm provides the animal with a large amount of freedom of movement, while still allowing the specimen to support itself despite the lack of a skeletal system. This is made possible through the use of various muscle layers within the octopus arm, which act as muscular hydrostats. Magnetic Resonance imaging of the octopus arm was employed to view the muscle layers within the octopus arm and observe trends and differences in these layers at the proximal, middle, and distal portions of the arms. A total of 39 arms from 6 specimens were imaged to give 112 total imaged sections (38 proximal, 37 middle, 37 distal). Significant increases in both the internal longitudinal muscle layer and the nervous core were found between the proximal and middle, proximal and distal, and middle and distal sections of the arms. This could reflect selection for these structures distally in the octopus arm for predator or other noxious stimuli avoidance. A significant decrease in the transverse muscle layer was found in the middle and distal sections of the arms. This could reflect selection for elongation in the proximal portion of the octopus arm or could be the result of selection for the internal longitudinal muscle layer and nervous core distally. Previous studies on Octopus vulgaris showed a preference for using the proximal arms in the pushing movement of crawling and a preference for using the anterior arms in exploring behaviors (Levy et al., 2015 and Byrne et al., 2006). Differences between the anterior and posterior arms for the transverse muscle layer, internal longitudinal muscle layer, and the nervous core were insignificant, reflecting a lack of structure-function relationships. This could also be due to a low sample size. Differences between the left and right arms for the transverse muscle layer, internal longitudinal muscle layer, and the nervous core were insignificant, supporting previous evidence that left versus right eye and arm preferences in octopus are not population-wide, but individual. Some slight trends can be found for individual arms, but the sample size was too small to make definitive statements regarding differences among specific arms.
ContributorsRoy, Cayla C (Author) / Fisher, Rebecca (Thesis director) / Marvi, Hamid (Committee member) / Cherry, Brian (Committee member) / Watts College of Public Service & Community Solut (Contributor) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132662-Thumbnail Image.png
Description
As human populations continue to expand, interactions with wildlife are expected to increase due to destruction of land and global climate change threatening native habitats. Established areas of protection are becoming essential to species survival and biodiversity protection. National Parks (NP) are a globally ubiquitous method employed to protect wildlife

As human populations continue to expand, interactions with wildlife are expected to increase due to destruction of land and global climate change threatening native habitats. Established areas of protection are becoming essential to species survival and biodiversity protection. National Parks (NP) are a globally ubiquitous method employed to protect wildlife and habitats. Often NPs are mosaics of relatively small protected areas in a “sea” of human-dominated landscapes, and these remaining habitat “islands” are becoming essential to preventing species extinction. However, the establishment of a NP can lead to increased human-wildlife conflicts (HWC) and disenfranchisement of local communities, particularly along their borders. We conducted semi-structured interviews in six different countries to better understand the nature of HWCs at the borders of major NPs: (1) Khao Yai NP, Thailand; (2) Myall Lakes NP, Australia; (3) Chitwan NP, Nepal; (4) Kruger NP, South Africa; (5) Chingaza NP, Colombia, and (6) Yellowstone NP, United States. We evaluated affinity to wildlife, perception of conflicts, management success, and potential solutions at each park to better understand the global nature of HWCs.We also evaluated these data in relationship to the Human Development Index (HDI) to determine if there was a correlation between development and conflict issues. We found the intrinsic value of wildlife to not markedly differ between countries. Conflict was perceived as higher in the United States and Australia but was known to be of greater intensity in Nepal and South Africa. Management of NPs was well-regarded with a slight decrease from less-developed countries to more-developed countries, with solutions that were creative and unique to each region. Results appeared to be related to shifting baselines between countries and also to equivalency in a cross-cultural assessment. When these theories are taken into account, the complexity of HWCs globally is better understood. As our world continues to expand and NPs become some of the only contiguous native habitat and refuges for wildlife, it is important to understand the complex relationships occurring at the interface between natural and human communities and to explore effective solutions to these problems.
ContributorsRagan, Kinley Ann (Author) / Schoon, Michael (Thesis director) / Schipper, Jan (Committee member) / Senko, Jesse (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132399-Thumbnail Image.png
Description
Art is an ancient, personal, and cultural phenomenon used to convey human creativity and emotion. Dating back as early as 40,000 years in Indonesian cave paintings, this medium has been used to record stories, histories, and shape cultural opinion throughout the history of mankind. While we have witnessed the rise

Art is an ancient, personal, and cultural phenomenon used to convey human creativity and emotion. Dating back as early as 40,000 years in Indonesian cave paintings, this medium has been used to record stories, histories, and shape cultural opinion throughout the history of mankind. While we have witnessed the rise and fall of types of art in popular culture and traditions, the core of art remains the same, which is to express the imagery within the human mind into a tangible form. As such, this allows for the candid acknowledgement and projection of an individual’s state of being into a productive, expressive skill which reaps therapeutic benefits.
ContributorsMahmud, Aysha (Co-author) / Shahid, Marija (Co-author) / Button, Melissa (Thesis director) / Moore, Marianne (Committee member) / School of Art (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132402-Thumbnail Image.png
Description
With the advent of precision medicine, oncologists aim to target tumors that do not respond well to conventional treatment. One such therapy is oncolytic virotherapy, a treatment reliant on viral replication for tumor specific killing. Downregulation of the proteins RIP3 kinase, DAI or MLKL can result in a nonfunctional programmed

With the advent of precision medicine, oncologists aim to target tumors that do not respond well to conventional treatment. One such therapy is oncolytic virotherapy, a treatment reliant on viral replication for tumor specific killing. Downregulation of the proteins RIP3 kinase, DAI or MLKL can result in a nonfunctional programmed necroptotic cell death pathway, common amongst breast cancer and melanoma. Vaccinia virus (VACV) mutants with a nonfunctional E3 protein are able to selectively replicate in necroptosis deficient cells but not in necroptosis competent cells, making them potential candidates for oncolytic virotherapy. In order to establish the efficacy and selectivity of this treatment, an accurate tumor model is required. Eight established breast adenocarcinomas and two established melanomas were selected as potential candidates, both human and murine. A pan screening method for necroptosis was established utilizing western blot analysis for expression of aforementioned proteins following various induction methods such as IFN α or VACV infection. In addition, live cell imaging after treatment with tumor necrosis factor (TNFα) and the pan-caspase inhibitor zVAD-fmk was used as a method to visualize necroptosis pathway functionality. Based on these results, cell lines will be selected and modified to create a breast cancer model with cells that are syngeneic, differing only in expression of either RIP3. VACV can be tested for tumor volume reduction in these models to ask if RIP3 expression affects efficacy of mutant VACV as an oncolytic virus.
ContributorsKumar, Aradhana (Author) / Jacobs, Bertram (Thesis director) / McFadden, Grant (Committee member) / Borad, Mitesh (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132406-Thumbnail Image.png
Description
Type 2 diabetes mellitus (T2DM) is a life-long disease that affects over 27 million individuals in the United States alone. There are many different risk factors and pre-indicators of T2DM. One of them is insulin resistance. Insulin resistance occurs when the body is unable to appropriately respond to insulin. This

Type 2 diabetes mellitus (T2DM) is a life-long disease that affects over 27 million individuals in the United States alone. There are many different risk factors and pre-indicators of T2DM. One of them is insulin resistance. Insulin resistance occurs when the body is unable to appropriately respond to insulin. This in turn leads to increased levels of glucose and insulin in the bloodstream. Unlike T2DM, insulin resistance is a reversible diagnosis. The purpose of this project was to identify the most influential genetic and dietary factors of insulin resistance and to see if individuals have some extent of control to possibly avoid the diagnosis of insulin resistance and possibly T2DM entirely.
A total of 26 human subjects were used in this study. Each subject was classified as either lean or obese, according to their BMI measurement. First, the subjects underwent an oral glucose tolerance test. Blood samples were taken to measure glucose levels in the blood. After the test subject characteristics for each subject was obtained. These included age, BMI, body fat percentage, fat free mass (FFM), height, total mass, waist circumference, hip circumference, and waist to hip ratio. After the subject characteristics and blood glucose were measured the blood samples taken previously were then centrifuged, and the blood plasma was extracted. The blood plasma was then used to undergo an Insulin ELISA test. After extensive analysis, the Matsuda Index of each subject was obtained. Subjects with a Matsuda value of 6.0 or under were considered insulin resistant while subjects with a Matsuda value higher than 6.0 were considered insulin sensitive. Subjects were also required to submit a dietary record over the course of three days. The food intake was then put into a food processing software which gave a daily average of the macro and micro nutrients for each subject. Both the subject and dietary values were put into a multiple regression with a significance factor of p < 0.5 to see which factors contributed most to the Matsuda value.
It was found that BMI, height, total mass, insulin and fat free mass, all of which were subject characteristics, were considered to be significant. Some of these factors an individual has no control over, such as height and insulin. However other factors such as BMI, total mass and fat free mass can be affected by both a healthy diet and frequent exercise. This study validated that diet and physical activity can greatly influence an individual’s susceptibility to insulin resistance and ultimately T2DM.
ContributorsBrinkerhoff, Catalina Marie (Author) / Katsanos, Christos (Thesis director) / Shaffer, Zachary (Committee member) / College of Health Solutions (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132410-Thumbnail Image.png
Description
This study examined whether cortisol changes caused by examination stress are more associated with acute psychological state or physical symptoms of stress. Participants’ salivary cortisol was assayed before and after taking a final examination, and a survey was administered to assess their psychological state for depression, tension, and fatigue, as

This study examined whether cortisol changes caused by examination stress are more associated with acute psychological state or physical symptoms of stress. Participants’ salivary cortisol was assayed before and after taking a final examination, and a survey was administered to assess their psychological state for depression, tension, and fatigue, as well as the degree to which they experienced a variety of physical symptoms. Physical symptoms, tension, and depression were found to positively correlate with changes in cortisol across the examination period with depression showing the strongest correlation. No correlation was observed between fatigue and changes in cortisol during the examination period. Additionally, physical symptoms were found to positively correlate with average cortisol across the examination period while depression and fatigue were found to negatively correlate with average cortisol across the examination period. No correlation was observed between tension and average cortisol during the examination period. None of these findings were statistically significant, which suggests that no relationship exists between cortisol and acute psychological state or physical symptoms of stress; however, the study was limited by its small sample size and several potentially confounding variables, making it difficult to draw any firm conclusions.
ContributorsSchlichting, Matthew James (Author) / Nesse, Randolph (Thesis director) / Doane, Leah (Committee member) / Trumble, Benjamin (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132413-Thumbnail Image.png
Description
Traumatic brain injury (TBI) is a major cause of disability, with approximately 1.7 million incidents reported annually. Following a TBI, patients are likely to sustain sensorimotor and cognitive impairments and are at an increased risk of developing neurodegenerative diseases later in life. Despite this, robust therapies that treat TBI neuropathology

Traumatic brain injury (TBI) is a major cause of disability, with approximately 1.7 million incidents reported annually. Following a TBI, patients are likely to sustain sensorimotor and cognitive impairments and are at an increased risk of developing neurodegenerative diseases later in life. Despite this, robust therapies that treat TBI neuropathology are not available in the clinic. One emerging therapeutic approach is to target epigenetic mediators that modulate a variety of molecular regulatory events acutely following injury. Specifically, previous studies demonstrated that histone deacetylase inhibitor (HDACi) administration following TBI reduced inflammation, enhanced functional outcomes, and was neuroprotective. Here, we evaluated a novel quisinostat-loaded PLA-PEG nanoparticle (QNP) therapy in treating TBI as modeled by a controlled cortical impact. We evaluated initial pharmacodynamics within the injured cortex via histone acetylation levels following QNP treatment. We observed that QNP administration acutely following injury increased histone acetylation specifically within the injury penumbra, as detected by Western blot analysis. Given this effect, we evaluated QNP therapeutic efficacy. We observed that QNP treatment dampened motor deficits as measured by increased rotarod latency to fall relative to blank nanoparticle- and saline-treated controls. Additionally, open field results show that QNP treatment altered locomotion following injury. These results suggest that HDACi therapies are a beneficial therapeutic strategy following neural injury and demonstrate the utility for nanoparticle formulations as a mode for HDACi delivery following TBI.
ContributorsMousa, Gergey (Author) / Stabenfeldt, Sarah (Thesis director) / Newbern, Jason (Committee member) / Sirianni, Rachael (Committee member) / School of Life Sciences (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132423-Thumbnail Image.png
Description
Novel biological strategies for cancer therapy have recently been able to generate antitumor effects in the clinic. Of these new advancements, oncolytic virotherapy seems to be a promising strategy through a dual mechanism of oncolysis and immunogenicity of the host to the target cells. Myxoma virus (MYXV) is an oncolytic

Novel biological strategies for cancer therapy have recently been able to generate antitumor effects in the clinic. Of these new advancements, oncolytic virotherapy seems to be a promising strategy through a dual mechanism of oncolysis and immunogenicity of the host to the target cells. Myxoma virus (MYXV) is an oncolytic poxvirus that has a natural tropism for European rabbits, being nonpathogenic in humans and all other known vertebrates. MYXV is able to infect cancer cells which, due to mutations, have defects in many signaling pathways, notably pathways involved in antiviral responses. While MYXV alone elicits lysis of cancer cells, recombinant techniques allow for the implementation of transgenes, which have the potential of ‘arming’ the virus to enhance its potential as an oncolytic virus. The implementation of certain transgenes allow for the promotion of robust anti-tumor immune responses. To investigate the potential of immune-inducing transgenes in MYXV, in vitro experiments were performed with several armed recombinant MYXVs as well as unarmed wild-type and rabbit-attenuated MYXV. As recent studies have shown the ability of MYXV to uniquely target malignant human hematopoietic stem cells, the potential of oncolytic MYXV armed with immune-inducing transgenes was investigated through in vitro killing analysis using human acute myeloid leukemia (AML) and multiple myeloma (MM) cell lines. Furthermore, in vitro experiments were also performed using primary bone marrow (BM) cells obtained from human patients diagnosed with MM. In this study, armed MYXV-infected human AML and MM cells resulted in increased cell death relative to unarmed MYXV-infected cells, suggesting enhanced killing via induced mechanisms of cell death from the immune-inducing transgenes. Furthermore, increased killing of primary BM cells with multiple myeloma was seen in armed MYXV-infected primary cells relative to unarmed MYXV-infected primary cells.
ContributorsMamola, Joseph (Author) / McFadden, Grant (Thesis director) / Jacobs, Bertram (Committee member) / Blattman, Joseph (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132424-Thumbnail Image.png
Description
The highly conserved Notch signaling pathway regulates cell-cell communication pathways, cell fate, cell determination, cell death, embryonic development, and adult tissue pathways in metazoans. The Notch receptors and ligands that bind to Notch are single pass, transmembrane proteins that communicate cell to cell via juxtacrine signaling. There are reports of

The highly conserved Notch signaling pathway regulates cell-cell communication pathways, cell fate, cell determination, cell death, embryonic development, and adult tissue pathways in metazoans. The Notch receptors and ligands that bind to Notch are single pass, transmembrane proteins that communicate cell to cell via juxtacrine signaling. There are reports of the divergent function and localization of the Deltalike 3 (Dll3) ligand. In Mus musculus (an eutherin mammal) the DLL3 protein inhibits the Notch signaling pathway and is localized in the Golgi apparatus. In contrast, the DLL3 protein from zebrafish, Danio rerio (a teleost) activates Notch and is located on the cell surface. This study will focus on examining the evolutionary pathway/evolutionary similarities, localization, and function of the A. carolinensis dll3 gene in comparison to other vertebrate species. This is important because there is not much known about the evolutionary divergence of the DLL3 A. carolinensis protein, its function in Notch signaling, and its subcellular localization.
Evolutionary analysis of vertebrate DLL3 protein sequences using phylogenetic trees showed that D. rerio and A. carolinensis are more evolutionarily similar in comparison to M. musculus suggesting that they may have similar intracellular localization. However, immunofluorescence staining experiments showed that the A. carolinensis DLL3 protein co-localized significantly with an endoplasmic reticulum (ER) specific primary antibody. Since this protein is localized in the secretory system, similar to that of M. musculus DLL3, it suggests that its function is to inhibit the Notch signaling pathway. Protein sequence alignments were created that suggested that there is a region in the protein sequences where the lizard and mouse sequence are conserved, while the zebrafish sequence simultaneously varies. This region of the amino acid sequence could be responsible for the difference in localization and function of the protein in these two species.
ContributorsBoschi, Alexis (Author) / Wilson-Rawls, Jeanne (Thesis director) / Newbern, Jason (Committee member) / Wilson Sayres, Melissa (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132428-Thumbnail Image.png
Description
Experimentation with glaze materials resulted in 2 functional and interesting base glazes with multiple color variants each. A semi-matte stoneware glaze was created, however after being unable to replicate a specific coloring without drying out the glaze, it was discovered that using this glaze to spray over specific studio glazes

Experimentation with glaze materials resulted in 2 functional and interesting base glazes with multiple color variants each. A semi-matte stoneware glaze was created, however after being unable to replicate a specific coloring without drying out the glaze, it was discovered that using this glaze to spray over specific studio glazes produced a more pleasant color effect than the glaze by itself. A glossy clear glaze was created. The glaze crazed minimally, and color variants were created with the rare earth metals erbium, praseodymium, and neodymium, resulting in celadon-like glazes that were pink, green, and bluish purple respectively. Finally, A semi-matte stoneware glaze with high spodumene content was created with two specific color variations
ContributorsVilen, Zachary Kwochka (Author) / Beiner, Susan (Thesis director) / Steimle, Timothy (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05