Matching Items (5)
129351-Thumbnail Image.png
Description

The ecological impact of energy production and consumption is often relegated in analytical accounts of the evolution of energy systems, where production and consumption patterns are analysed as the interaction of social, economic and technological factors. Ecological and social–ecological dynamics are, we argue, critical in the context of imperatives for

The ecological impact of energy production and consumption is often relegated in analytical accounts of the evolution of energy systems, where production and consumption patterns are analysed as the interaction of social, economic and technological factors. Ecological and social–ecological dynamics are, we argue, critical in the context of imperatives for access to modern energy services that are inadequate for significant sections of the world's population. The ecological impacts of energy use are often analysed as a set of externalities, many of which are uncertain or unquantifiable, particularly if they stem from earth system change such as anthropogenic climate change. Here we outline the benefits from analysing energy systems as social–ecological systems. We review the extensive literature from ecology and resilience theories, and compare the analytical domains, major findings and emphasis of social–ecological systems with socio-technical transition research. We illustrate these differences with the example of the multi-scale impacts of biofuel expansion. We show that social–ecological systems research combines analysis of interactions with ecological systems and power relations between actors in energy systems, and has the potential to do so across production, distribution and consumption domains whilst illustrating the dynamics of such energy systems, identifying potential trade-offs and regime shifts.

Created2014-03-01
129422-Thumbnail Image.png
Description

Faced with numerous seemingly intractable social and environmental challenges, many scholars and practitioners are increasingly interested in understanding how to actively engage and transform the existing systems holding such problems in place. Although a variety of analytical models have emerged in recent years, most emphasize either the social or ecological

Faced with numerous seemingly intractable social and environmental challenges, many scholars and practitioners are increasingly interested in understanding how to actively engage and transform the existing systems holding such problems in place. Although a variety of analytical models have emerged in recent years, most emphasize either the social or ecological elements of such transformations rather than their coupled nature. To address this, first we have presented a definition of the core elements of a social-ecological system (SES) that could potentially be altered in a transformation. Second, we drew on insights about transformation from three branches of literature focused on radical change, i.e., social movements, socio-technical transitions, and social innovation, and gave consideration to the similarities and differences with the current studies by resilience scholars. Drawing on these findings, we have proposed a framework that outlines the process and phases of transformative change in an SES. Future research will be able to utilize the framework as a tool for analyzing the alteration of social-ecological feedbacks, identifying critical barriers and leverage points and assessing the outcome of social-ecological transformations.

ContributorsMoore, Michele-Lee (Author) / Tjornbo, Ola (Author) / Enfors, Elin (Author) / Knapp, Corrie (Author) / Hodbod, Jennifer (Author) / Baggio, Jacopo (Author) / Norstrom, Albert (Author) / Olsson, Per (Author) / Biggs, Duan (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-11-30
129127-Thumbnail Image.png
Description

The purpose of applying social-ecological resilience thinking to food systems is twofold: First, to define those factors that help achieve a state in which food security for all and at all scales is possible. Second, to provide insights into how to maintain the system in this desirable regime. However, the

The purpose of applying social-ecological resilience thinking to food systems is twofold: First, to define those factors that help achieve a state in which food security for all and at all scales is possible. Second, to provide insights into how to maintain the system in this desirable regime. However, the resilience of food systems is distinct from the broader conceptualizations of resilience in social-ecological systems because of the fundamentally normative nature of food systems: humans need food to survive, and thus system stability is typically a primary policy objective for food system management. With that being said, society also needs food systems that can intensify sustainably i.e., feed everybody equitably, provide livelihoods and avoid environmental degradation while responding flexibly to shocks and uncertainty. Today’s failure in meeting food security objectives can be interpreted as the lack of current governance arrangements to consider the full and differential dimensions of food system functions – economic, ecological and social – at appropriate scales: in other words, the multifunctionality of food.

We focus on functional and response diversity as two key attributes of resilient, multifunctional food systems; respectively, the number of different functional groups and the diversity of types of responses to disturbances within a functional group. Achieving food security will require functional redundancy and enhanced response diversity, creating multiple avenues to fulfill all food system objectives. We use the 2013-15 drought in California to unpack the potential differences between managing for a single function – economic profit – and multiple functions. Our analysis emphasizes how the evolution of the Californian food system has reduced functional and response diversity and created vulnerabilities. Managing for the resilience of food systems will require a shift in priorities from profit maximization to the management for all functions that create full food security at multiple scales.

Created2015
129128-Thumbnail Image.png
Description

This article identifies equity outcomes associated with three biofuel systems in Brazil, Ethiopia and Guatemala. Acknowledging that winners and losers are socially and politically generated, the article identifies some of the factors behind the distribution of winners and losers along different stages of three sugarcane-ethanol supply chains. Analysing the outcomes

This article identifies equity outcomes associated with three biofuel systems in Brazil, Ethiopia and Guatemala. Acknowledging that winners and losers are socially and politically generated, the article identifies some of the factors behind the distribution of winners and losers along different stages of three sugarcane-ethanol supply chains. Analysing the outcomes for equity within each case study reveals an uneven distribution that we argue is related to the procedure and structure of the given sugarcane-ethanol system, and the recognition of the impacts on different actors within those structures. Increasing equity in sugarcane-ethanol systems will require greater openness in decision making processes, in order that multiple voices are taken into account in the promotion, production and consumption of biofuels – particularly those of smaller and less powerful actors.

Created2015-06-01
126671-Thumbnail Image.png
Description
Hydroelectric dams, often part of larger development programs in developing countries are characterized by conflicting interests of stakeholder groups, emblematic for the contested nature of development. Because of these different interests, stakeholders develop different evaluations of such projects, that can be understood as frames of events and projects. Frames are

Hydroelectric dams, often part of larger development programs in developing countries are characterized by conflicting interests of stakeholder groups, emblematic for the contested nature of development. Because of these different interests, stakeholders develop different evaluations of such projects, that can be understood as frames of events and projects. Frames are “the different ways of understanding or representing a system" (Leach et al. 2010 b). In this article, I analyze frames stake-holders use to convey a distinct perspective on problems, root causes, solutions, and benefits associ-ated with the hydroelectric Gibe III dam and accompanying sugarcane plantations in the Omo Valley, Ethiopia. I found that stakeholders use contrasting frames and narratives to describe the projects, but partially also propose mutual solutions. Stakeholders incorporate modernist arguments to justify their actions. Supporters and opponents address different aspects of the livelihoods of Omo valley inhabitants. By analyzing different frames and narratives, this paper contributes to opening up and broadening the debate on the development activities in the Omo valley and shows alternative pathways for sustainable development projects in Ethiopia.
ContributorsGerigk, Rebecca (Author) / Fischer, Daniel (Contributor) / Aggarwal, Rimjhim (Contributor) / Hodbod, Jennifer (Contributor)
Created2018-06-27