Matching Items (1,058)
Filtering by

Clear all filters

134397-Thumbnail Image.png
Description
This paper proposes a new socket design to complement Project Fishbone, a design project focused on creating a lightweight transradial prosthetic device. The socket has a simple concept of introducing perforations on the surface of the socket using cost effective, and rapid manufacturing methods such as vacuum thermoforming and drilling.

This paper proposes a new socket design to complement Project Fishbone, a design project focused on creating a lightweight transradial prosthetic device. The socket has a simple concept of introducing perforations on the surface of the socket using cost effective, and rapid manufacturing methods such as vacuum thermoforming and drilling. The perforations on the socket allows for greater air ventilation to the prosthetic user's residual skin thus reducing the temperature within the socket. There were nine primary design iterations that were tested: 0.125, 0,187, 0.25-inch-thick designs, and 3/16, 15/64, 17/64-inch perforation sizes, and 12, 18 and 24 count of perforations. Initial test was done using the sockets of different thickness without any perforations to check for uniformity in design and manufacturing method using a regression test. It was found that an increase in thickness directly related to an increase in temperature cooling time. The temperature cooling test was run using a three-factor DOE method and no clear interaction between the factors was observed, thus the Kruskal-Wallis statistical test along with the post hoc Mann-Whitney test to check for significance among the factors as well as significance of groups within the factors. Statistical significance (p<0.05) was found in the socket thickness and size of perforations. Additionally, significance (p<0.02) was found in the 0.125 and 0.187-inch thickness and the 3/16-inch size perforations. Based on the significance between each group, the best combination for increased cooling time reduction was thus found to be with the 0.125-inch thick HDPE sheet and 3/16-inch sized perforation while the number of perforations did not make much difference. These results proved the concept of this new socket design that could be implemented into existing upper limb prosthetic systems.
ContributorsSebastian, Frederick (Author) / LaBelle, Jeffrey (Thesis director) / Lathers, Steven (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
ContributorsHindemith, Paul, 1895-1963 (Composer)