Matching Items (30)

149510-Thumbnail Image.png

Development of models for optical instrument transformers

Description

Optical Instrument Transformers (OIT) have been developed as an alternative to traditional instrument transformers (IT). The question "Can optical instrument transformers substitute for the traditional transformers?" is the main motivation of this study. Finding the answer for this question and

Optical Instrument Transformers (OIT) have been developed as an alternative to traditional instrument transformers (IT). The question "Can optical instrument transformers substitute for the traditional transformers?" is the main motivation of this study. Finding the answer for this question and developing complete models are the contributions of this work. Dedicated test facilities are developed so that the steady state and transient performances of analog outputs of a magnetic current transformer (CT) and a magnetic voltage transformer (VT) are compared with that of an optical current transformer (OCT) and an optical voltage transformer (OVT) respectively. Frequency response characteristics of OIT outputs are obtained. Comparison results show that OITs have a specified accuracy of 0.3% in all cases. They are linear, and DC offset does not saturate the systems. The OIT output signal has a 40~60 μs time delay, but this is typically less than the equivalent phase difference permitted by the IEEE and IEC standards for protection applications. Analog outputs have significantly higher bandwidths (adjustable to 20 to 40 kHz) than the IT. The digital output signal bandwidth (2.4 kHz) of an OCT is significantly lower than the analog signal bandwidth (20 kHz) due to the sampling rates involved. The OIT analog outputs may have significant white noise of 6%, but the white noise does not affect accuracy or protection performance. Temperatures up to 50oC do not adversely affect the performance of the OITs. Three types of models are developed for analog outputs: analog, digital, and complete models. Well-known mathematical methods, such as network synthesis and Jones calculus methods are applied. The developed models are compared with experiment results and are verified with simulation programs. Results show less than 1.5% for OCT and 2% for OVT difference and that the developed models can be used for power system simulations and the method used for the development can be used to develop models for all other brands of optical systems. The communication and data transfer between the all-digital protection systems is investigated by developing a test facility for all digital protection systems. Test results show that different manufacturers' relays and transformers based on the IEC standard can serve the power system successfully.

Contributors

Agent

Created

Date Created
2010

152153-Thumbnail Image.png

Transmission expansion planning for large power systems

Description

Transmission expansion planning (TEP) is a complex decision making process that requires comprehensive analysis to determine the time, location, and number of electric power transmission facilities that are needed in the future power grid. This dissertation investigates the topic of

Transmission expansion planning (TEP) is a complex decision making process that requires comprehensive analysis to determine the time, location, and number of electric power transmission facilities that are needed in the future power grid. This dissertation investigates the topic of solving TEP problems for large power systems. The dissertation can be divided into two parts. The first part of this dissertation focuses on developing a more accurate network model for TEP study. First, a mixed-integer linear programming (MILP) based TEP model is proposed for solving multi-stage TEP problems. Compared with previous work, the proposed approach reduces the number of variables and constraints needed and improves the computational efficiency significantly. Second, the AC power flow model is applied to TEP models. Relaxations and reformulations are proposed to make the AC model based TEP problem solvable. Third, a convexified AC network model is proposed for TEP studies with reactive power and off-nominal bus voltage magnitudes included in the model. A MILP-based loss model and its relaxations are also investigated. The second part of this dissertation investigates the uncertainty modeling issues in the TEP problem. A two-stage stochastic TEP model is proposed and decomposition algorithms based on the L-shaped method and progressive hedging (PH) are developed to solve the stochastic model. Results indicate that the stochastic TEP model can give a more accurate estimation of the annual operating cost as compared to the deterministic TEP model which focuses only on the peak load.

Contributors

Agent

Created

Date Created
2013

152202-Thumbnail Image.png

The cost and benefit of bulk energy storage in the Arizona power transmission system

Description

This thesis addresses the issue of making an economic case for energy storage in power systems. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load; store energy when it is inexpensive

This thesis addresses the issue of making an economic case for energy storage in power systems. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load; store energy when it is inexpensive and discharge energy when it is expensive; potentially defer transmission and generation expansion; and provide for generation reserve margins. As renewable energy resource penetration increases, the uncertainty and variability of wind and solar may be alleviated by bulk energy storage technologies. The quadratic programming function in MATLAB is used to simulate an economic dispatch that includes energy storage. A program is created that utilizes quadratic programming to analyze various cases using a 2010 summer peak load from the Arizona transmission system, part of the Western Electricity Coordinating Council (WECC). The MATLAB program is used first to test the Arizona test bed with a low level of energy storage to study how the storage power limit effects several optimization out-puts such as the system wide operating costs. Very high levels of energy storage are then added to see how high level energy storage affects peak shaving, load factor, and other system applications. Finally, various constraint relaxations are made to analyze why the applications tested eventually approach a constant value. This research illustrates the use of energy storage which helps minimize the system wide generator operating cost by "shaving" energy off of the peak demand.

Contributors

Agent

Created

Date Created
2013

153184-Thumbnail Image.png

Engineering the implementation of pumped hydro energy storage in the Arizona power grid

Description

This thesis addresses the issue of making an economic case for bulk energy storage in the Arizona bulk power system. Pumped hydro energy storage (PHES) is used in this study. Bulk energy storage has often been suggested for large scale

This thesis addresses the issue of making an economic case for bulk energy storage in the Arizona bulk power system. Pumped hydro energy storage (PHES) is used in this study. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load (store energy when it is inexpensive [energy demand is low] and discharge energy when it is expensive [energy demand is high]). It also has the potential to provide opportunities to avoid transmission and generation expansion, and provide for generation reserve margins. As the level of renewable energy resources increases, the uncertainty and variability of wind and solar resources may be improved by bulk energy storage technologies.

For this study, the MATLab software platform is used, a mathematical based modeling language, optimization solvers (specifically Gurobi), and a power flow solver (PowerWorld) are used to simulate an economic dispatch problem that includes energy storage and transmission losses. A program is created which utilizes quadratic programming to analyze various cases using a 2010 summer peak load from the Arizona portion of the Western Electricity Coordinating Council (WECC) system. Actual data from industry are used in this test bed. In this thesis, the full capabilities of Gurobi are not utilized (e.g., integer variables, binary variables). However, the formulation shown here does create a platform such that future, more sophisticated modeling may readily be incorporated.

The developed software is used to assess the Arizona test bed with a low level of energy storage to study how the storage power limit effects several optimization outputs such as the system wide operating costs. Large levels of energy storage are then added to see how high level energy storage affects peak shaving, load factor, and other system applications. Finally, various constraint relaxations are made to analyze why the applications tested eventually approach a constant value. This research illustrates the use of energy storage which helps minimize the system wide generator operating cost by "shaving" energy off of the peak demand.

The thesis builds on the work of another recent researcher with the objectives of strengthening the assumptions used, checking the solutions obtained, utilizing higher level simulation languages to affirm results, and expanding the results and conclusions.

One important point not fully discussed in the present thesis is the impact of efficiency in the pumped hydro cycle. The efficiency of the cycle for modern units is estimated at higher than 90%. Inclusion of pumped hydro losses is relegated to future work.

Contributors

Agent

Created

Date Created
2014

153066-Thumbnail Image.png

Impact of distributed photovoltaic generation and customer loads on power quality of a distribution system

Description

There has been a considerable growth in distributed photovoltaic (PV) genera-tion and its integration in electric power distribution systems. This has led to a change in the distribution system infrastructure. Properly planned distributed gen-eration can offer a variety of benefits

There has been a considerable growth in distributed photovoltaic (PV) genera-tion and its integration in electric power distribution systems. This has led to a change in the distribution system infrastructure. Properly planned distributed gen-eration can offer a variety of benefits for system operations and enhance opera-tional performance of the distribution system. However, high penetration of PV resources can give rise to operating conditions which do not arise in traditional systems and one of the potential issues that needs to be addressed involves impact on power quality of the system with respect to the spectral distortion in voltages and currents.

The test bed feeder model representing a real operational distribution feeder is developed in OpenDSS and the feeder modeling takes into consideration the ob-jective of analysis and frequency of interest. Extensive metering infrastructure and measurements are utilized for validation of the model at harmonic frequencies. The harmonic study performed is divided into two sections: study of impact of non-linear loads on total harmonic voltage and current distortions and study of impact of PV resources on high frequency spectral distortion in voltages and cur-rents. The research work incorporates different harmonic study methodologies such as harmonic and high frequency power flow, and frequency scan study. The general conclusions are presented based on the simulation results and in addition, scope for future work is discussed.

Contributors

Agent

Created

Date Created
2014

153938-Thumbnail Image.png

Harmonic resonance in power transmission systems due to the addition of shunt capacitors

Description

Shunt capacitors are often added in transmission networks at suitable locations to improve the voltage profile. In this thesis, the transmission system in Arizona is considered as a test bed. Many shunt capacitors already exist in the Arizona transmission

Shunt capacitors are often added in transmission networks at suitable locations to improve the voltage profile. In this thesis, the transmission system in Arizona is considered as a test bed. Many shunt capacitors already exist in the Arizona transmission system and more are planned to be added. Addition of these shunt capacitors may create resonance conditions in response to harmonic voltages and currents. Such resonance, if it occurs, may create problematic issues in the system. It is main objective of this thesis to identify potential problematic effects that could occur after placing new shunt capacitors at selected buses in the Arizona network. Part of the objective is to create a systematic plan for avoidance of resonance issues.

For this study, a method of capacitance scan is proposed. The bus admittance matrix is used as a model of the networked transmission system. The calculations on the admittance matrix were done using Matlab. The test bed is the actual transmission system in Arizona; however, for proprietary reasons, bus names are masked in the thesis copy in-tended for the public domain. The admittance matrix was obtained from data using the PowerWorld Simulator after equivalencing the 2016 summer peak load (planning case). The full Western Electricity Coordinating Council (WECC) system data were used. The equivalencing procedure retains only the Arizona portion of the WECC.

The capacitor scan results for single capacitor placement and multiple capacitor placement cases are presented. Problematic cases are identified in the form of ‘forbidden response. The harmonic voltage impact of known sources of harmonics, mainly large scale HVDC sources, is also presented.

Specific key results for the study indicated include:

• The forbidden zones obtained as per the IEEE 519 standard indicates the bus 10 to be the most problematic bus.

• The forbidden zones also indicate that switching values for the switched shunt capacitor (if used) at bus 3 should be should be considered carefully to avoid resonance condition from existing.

• The highest sensitivity of 0.0033 per unit for HVDC sources of harmonics was observed at bus 7 when all the HVDC sources were active at the same time.

Contributors

Agent

Created

Date Created
2015

154323-Thumbnail Image.png

Energy market transparency: analyzing the impacts of constraint relaxation and out-of-market correction practices in electric energy markets

Description

This work presents research on practices in the day-ahead electric energy market, including replication practices and reliability coordinators used by some market operators to demonstrate the impact these practices have on market outcomes. The practice of constraint relaxations similar to

This work presents research on practices in the day-ahead electric energy market, including replication practices and reliability coordinators used by some market operators to demonstrate the impact these practices have on market outcomes. The practice of constraint relaxations similar to those an Independent System Operator (ISO) might perform in day-ahead market models is implemented. The benefits of these practices are well understood by the industry; however, the implications these practices have on market outcomes and system security have not been thoroughly investigated. By solving a day-ahead market model with and without select constraint relaxations and comparing the resulting market outcomes and possible effects on system security, the effect of these constraint relaxation practices is demonstrated.

Proposed market solutions are often infeasible because constraint relaxation practices and approximations that are incorporated into market models. Therefore, the dispatch solution must be corrected to ensure its feasibility. The practice of correcting the proposed dispatch solution after the market is solved is known as out-of-market corrections (OMCs), defined as any action an operator takes that modifies a proposed day-ahead dispatch solution to ensure operating and reliability requirements. The way in which OMCs affect market outcomes is illustrated through the use of different corrective procedures. The objective of the work presented is to demonstrate the implications of these industry practices and assess the impact these practices have on market outcomes.

Contributors

Agent

Created

Date Created
2016

151763-Thumbnail Image.png

Applications and calculation of a distribution class locational marginal price

Description

This thesis presents an overview of the calculation and application of locational marginal prices in electric power systems particularly pertaining to the distribution system. The terminology proposed is a distribution locational marginal price or DLMP. The calculation of locational process

This thesis presents an overview of the calculation and application of locational marginal prices in electric power systems particularly pertaining to the distribution system. The terminology proposed is a distribution locational marginal price or DLMP. The calculation of locational process in distribution engineering is conjectured and discussed. The use of quadratic programming for this calculation is proposed and illustrated. A small four bus test bed exemplifies the concept and then the concept is expanded to the IEEE 34 bus distribution system. Alternatives for the calculation are presented, and approximations are reviewed. Active power losses in the system are modeled and incorporated by two different methods. These calculation methods are also applied to the 34 bus system. The results from each method are compared to results found using the PowerWorld simulator. The application of energy management using the DLMP to control load is analyzed as well. This analysis entails the use of the DLMP to cause certain controllable loads to decrease when the DLMP is high, and vice-versa. Tests are done to illustrate the impact of energy management using DLMPs for residential, commercial, and industrial controllable loads. Results showing the dynamics of the loads are shown. The use and characteristics of Matlab function FMINCON are presented in an appendix.

Contributors

Agent

Created

Date Created
2013

152012-Thumbnail Image.png

Managing solar uncertainty in neighboring systems with stochastic unit commitment

Description

As renewable energy becomes more prevalent in transmission and distribution systems, it is vital to understand the uncertainty and variability that accompany these resources. Microgrids have the potential to mitigate the effects of resource uncertainty. With the ability to exist

As renewable energy becomes more prevalent in transmission and distribution systems, it is vital to understand the uncertainty and variability that accompany these resources. Microgrids have the potential to mitigate the effects of resource uncertainty. With the ability to exist in either an islanded mode or maintain connections with the main-grid, a microgrid can increase reliability, defer T&D; infrastructure and effectively utilize demand response. This study presents a co-optimization framework for a microgrid with solar photovoltaic generation, emergency generation, and transmission switching. Today unit commitment models ensure reliability with deterministic criteria, which are either insufficient to ensure reliability or can degrade economic efficiency for a microgrid that uses a large penetration of variable renewable resources. A stochastic mixed integer linear program for day-ahead unit commitment is proposed to account for uncertainty inherent in PV generation. The model incorporates the ability to trade energy and ancillary services with the main-grid, including the designation of firm and non-firm imports, which captures the ability to allow for reserve sharing between the two systems. In order to manage the computational complexities, a Benders' decomposition approach is utilized. The commitment schedule was validated with solar scenario analysis, i.e., Monte-Carlo simulations are conducted to test the proposed dispatch solution. For this test case, there were few deviations to power imports, 0.007% of solar was curtailed, no load shedding occurred in the main-grid, and 1.70% load shedding occurred in the microgrid.

Contributors

Agent

Created

Date Created
2013

150520-Thumbnail Image.png

A power system reliability evaluation technique and education tool for wind energy integration

Description

This thesis is focused on the study of wind energy integration and is divided into two segments. The first part of the thesis deals with developing a reliability evaluation technique for a wind integrated power system. A multiple-partial outage model

This thesis is focused on the study of wind energy integration and is divided into two segments. The first part of the thesis deals with developing a reliability evaluation technique for a wind integrated power system. A multiple-partial outage model is utilized to accurately calculate the wind generation availability. A methodology is presented to estimate the outage probability of wind generators while incorporating their reduced power output levels at low wind speeds. Subsequently, power system reliability is assessed by calculating the loss of load probability (LOLP) and the effect of wind integration on the overall system is analyzed. Actual generation and load data of the Texas power system in 2008 are used to construct a test case. To demonstrate the robustness of the method, relia-bility studies have been conducted for a fairly constant as well as for a largely varying wind generation profile. Further, the case of increased wind generation penetration level has been simulated and comments made about the usability of the proposed method to aid in power system planning in scenarios of future expansion of wind energy infrastructure. The second part of this thesis explains the development of a graphic user interface (GUI) to demonstrate the operation of a grid connected doubly fed induction generator (DFIG). The theory of DFIG and its back-to-back power converter is described. The GUI illustrates the power flow, behavior of the electrical circuit and the maximum power point tracking of the machine for a variable wind speed input provided by the user. The tool, although developed on MATLAB software platform, has been constructed to work as a standalone application on Windows operating system based computer and enables even the non-engineering students to access it. Results of both the segments of the thesis are discussed. Remarks are presented about the validity of the reliability technique and GUI interface for variable wind speed conditions. Improvements have been suggested to enable the use of the reliability technique for a more elaborate system. Recommendations have been made about expanding the features of the GUI tool and to use it to promote educational interest about renewable power engineering.

Contributors

Agent

Created

Date Created
2012