Matching Items (2)

128740-Thumbnail Image.png

Weak Polygyny in California Sea Lions and the Potential for Alternative Mating Tactics

Description

Female aggregation and male territoriality are considered to be hallmarks of polygynous mating systems. The development of genetic parentage assignment has called into question the accuracy of behavioral traits in

Female aggregation and male territoriality are considered to be hallmarks of polygynous mating systems. The development of genetic parentage assignment has called into question the accuracy of behavioral traits in predicting true mating systems. In this study we use 14 microsatellite markers to explore the mating system of one of the most behaviorally polygynous species, the California sea lion (Zalophus californianus). We sampled a total of 158 female-pup pairs and 99 territorial males across two breeding rookeries (San Jorge and Los Islotes) in the Gulf of California, Mexico. Fathers could be identified for 30% of pups sampled at San Jorge across three breeding seasons and 15% of sampled pups at Los Islotes across two breeding seasons. Analysis of paternal relatedness between the pups for which no fathers were identified (sampled over four breeding seasons at San Jorge and two at Los Islotes) revealed that few pups were likely to share a father. Thirty-one percent of the sampled males on San Jorge and 15% of the sampled males on Los Islotes were assigned at least one paternity. With one exception, no male was identified as the father of more than two pups. Furthermore, at Los Islotes rookery there were significantly fewer pups assigned paternity than expected given the pool of sampled males (p<0.0001). Overall, we found considerably lower variation in male reproductive success than expected in a species that exhibits behavior associated with strongly polygynous mating. Low variation in male reproductive success may result from heightened mobility among receptive females in the Gulf of California, which reduces the ability of males to monopolize groups of females. Our results raise important questions regarding the adaptive role of territoriality and the potential for alternative mating tactics in this species.

Contributors

Agent

Created

Date Created
  • 2012-03-14

128745-Thumbnail Image.png

The Use of Surrogate Data in Demographic Population Viability Analysis: A Case Study of California Sea Lions

Description

Reliable data necessary to parameterize population models are seldom available for imperiled species. As an alternative, data from populations of the same species or from ecologically similar species have been

Reliable data necessary to parameterize population models are seldom available for imperiled species. As an alternative, data from populations of the same species or from ecologically similar species have been used to construct models. In this study, we evaluated the use of demographic data collected at one California sea lion colony (Los Islotes) to predict the population dynamics of the same species from two other colonies (San Jorge and Granito) in the Gulf of California, Mexico, for which demographic data are lacking. To do so, we developed a stochastic demographic age-structured matrix model and conducted a population viability analysis for each colony. For the Los Islotes colony we used site-specific pup, juvenile, and adult survival probabilities, as well as birth rates for older females. For the other colonies, we used site-specific pup and juvenile survival probabilities, but used surrogate data from Los Islotes for adult survival probabilities and birth rates. We assessed these models by comparing simulated retrospective population trajectories to observed population trends based on count data. The projected population trajectories approximated the observed trends when surrogate data were used for one colony but failed to match for a second colony. Our results indicate that species-specific and even region-specific surrogate data may lead to erroneous conservation decisions. These results highlight the importance of using population-specific demographic data in assessing extinction risk. When vital rates are not available and immediate management actions must be taken, in particular for imperiled species, we recommend the use of surrogate data only when the populations appear to have similar population trends.

Contributors

Created

Date Created
  • 2015-09-28