Matching Items (3)
151929-Thumbnail Image.png
Description
The entire history of HIV-1 is hidden in its ten thousand bases, where information regarding its evolutionary traversal through the human population can only be unlocked with fine-scale sequence analysis. Measurable footprints of mutation and recombination have imparted upon us a wealth of knowledge, from multiple chimpanzee-to-human transmissions to patterns

The entire history of HIV-1 is hidden in its ten thousand bases, where information regarding its evolutionary traversal through the human population can only be unlocked with fine-scale sequence analysis. Measurable footprints of mutation and recombination have imparted upon us a wealth of knowledge, from multiple chimpanzee-to-human transmissions to patterns of neutralizing antibody and drug resistance. Extracting maximum understanding from such diverse data can only be accomplished by analyzing the viral population from many angles. This body of work explores two primary aspects of HIV sequence evolution, point mutation and recombination, through cross-sectional (inter-individual) and longitudinal (intra-individual) investigations, respectively. Cross-sectional Analysis: The role of Haiti in the subtype B pandemic has been hotly debated for years; while there have been many studies, up to this point, no one has incorporated the well-known mechanism of retroviral recombination into their biological model. Prior to the use of recombination detection, multiple analyses produced trees where subtype B appears to have first entered Haiti, followed by a jump into the rest of the world. The results presented here contest the Haiti-first theory of the pandemic and instead suggest simultaneous entries of subtype B into Haiti and the rest of the world. Longitudinal Analysis: Potential N-linked glycosylation sites (PNGS) are the most evolutionarily dynamic component of one of the most evolutionarily dynamic proteins known to date. While the number of mutations associated with the increase or decrease of PNGS frequency over time is high, there are a set of relatively stable sites that persist within and between longitudinally sampled individuals. Here, I identify the most conserved stable PNGSs and suggest their potential roles in host-virus interplay. In addition, I have identified, for the first time, what may be a gp-120-based environmental preference for N-linked glycosylation sites.
ContributorsHepp, Crystal Marie, 1981- (Author) / Rosenberg, Michael S. (Thesis advisor) / Hedrick, Philip (Committee member) / Escalante, Ananias (Committee member) / Kumar, Sudhir (Committee member) / Arizona State University (Publisher)
Created2013
128423-Thumbnail Image.png
Description

Assortative mating has been suggested to result in an increase in heritability and additive genetic variance through an increase in linkage disequilibrium. The impact of assortative mating on linkage disequilibrium was explicitly examined for the two-locus model of Wright (1921) and two selective assortative mating models. For the Wright (1921)

Assortative mating has been suggested to result in an increase in heritability and additive genetic variance through an increase in linkage disequilibrium. The impact of assortative mating on linkage disequilibrium was explicitly examined for the two-locus model of Wright (1921) and two selective assortative mating models. For the Wright (1921) model, when the proportion of assortative mating was high, positive linkage disequilibrium was generated. However, when the proportion of assortative mating was similar to that found in some studies, the amount of linkage disequilibrium was quite low. In addition, the amount of linkage disequilibrium was independent of the level of recombination. For two selective assortative models, the amount of linkage disequilibrium was a function of the amount of recombination. For these models, the linkage disequilibrium generated was negative mainly because repulsion heterozygotes were favored over coupling heterozygotes. From these findings, the impact of assortative mating on linkage disequilibrium, and consequently heritability and additive genetic variance, appears to be small and model-specific.

ContributorsHedrick, Philip (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-01-01
129605-Thumbnail Image.png
Description

Founder effects, genetic bottlenecks, and genetic drift in general can lead to low levels of genetic diversity, which can influence the persistence of populations. We examine genetic variation in two populations of desert bighorn sheep Ovis canadensis from New Mexico and Mexico to measure change over time and evaluate the

Founder effects, genetic bottlenecks, and genetic drift in general can lead to low levels of genetic diversity, which can influence the persistence of populations. We examine genetic variation in two populations of desert bighorn sheep Ovis canadensis from New Mexico and Mexico to measure change over time and evaluate the impact of introducing individuals from one population into the other. Over about three generations, the amount of genetic variation in the New Mexico population increased. In contrast, over about two generations the amount of genetic variation in the Mexican population decreased by a great extent compared with an estimate from another Mexican population from which it is primarily descended. The potential reasons for these changes are discussed. In addition, although both populations have low genetic variation, introduction of Mexican rams into the New Mexico population might increase the amount of genetic variation in the New Mexico population. Overall, it appears that management to increase genetic variation might require substantial detailed monitoring and evaluation of ancestry from the different sources and fitness components.

ContributorsHedrick, Philip (Author) / Wehausen, John D. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-06-01