Matching Items (58)
152033-Thumbnail Image.png
Description
The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of

The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of engineered complex systems and predict their future adaptive patterns. The approach allows the examination of complexity in the structure and the behavior of components as a result of their connections and in relation to their environment. This research describes and uses the major differences of natural complex adaptive systems (CASs) with artificial/engineered CASs to build a framework and platform for ECAS. While this framework focuses on the critical factors of an engineered system, it also enables one to synthetically employ engineering and mathematical models to analyze and measure complexity in such systems. In this way concepts of complex systems science are adapted to management science and system of systems engineering. In particular an integrated consumer-based optimization and agent-based modeling (ABM) platform is presented that enables managers to predict and partially control patterns of behaviors in ECASs. Demonstrated on the U.S. electricity markets, ABM is integrated with normative and subjective decision behavior recommended by the U.S. Department of Energy (DOE) and Federal Energy Regulatory Commission (FERC). The approach integrates social networks, social science, complexity theory, and diffusion theory. Furthermore, it has unique and significant contribution in exploring and representing concrete managerial insights for ECASs and offering new optimized actions and modeling paradigms in agent-based simulation.
ContributorsHaghnevis, Moeed (Author) / Askin, Ronald G. (Thesis advisor) / Armbruster, Dieter (Thesis advisor) / Mirchandani, Pitu (Committee member) / Wu, Tong (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2013
151994-Thumbnail Image.png
Description
Under the framework of intelligent management of power grids by leveraging advanced information, communication and control technologies, a primary objective of this study is to develop novel data mining and data processing schemes for several critical applications that can enhance the reliability of power systems. Specifically, this study is broadly

Under the framework of intelligent management of power grids by leveraging advanced information, communication and control technologies, a primary objective of this study is to develop novel data mining and data processing schemes for several critical applications that can enhance the reliability of power systems. Specifically, this study is broadly organized into the following two parts: I) spatio-temporal wind power analysis for wind generation forecast and integration, and II) data mining and information fusion of synchrophasor measurements toward secure power grids. Part I is centered around wind power generation forecast and integration. First, a spatio-temporal analysis approach for short-term wind farm generation forecasting is proposed. Specifically, using extensive measurement data from an actual wind farm, the probability distribution and the level crossing rate of wind farm generation are characterized using tools from graphical learning and time-series analysis. Built on these spatial and temporal characterizations, finite state Markov chain models are developed, and a point forecast of wind farm generation is derived using the Markov chains. Then, multi-timescale scheduling and dispatch with stochastic wind generation and opportunistic demand response is investigated. Part II focuses on incorporating the emerging synchrophasor technology into the security assessment and the post-disturbance fault diagnosis of power systems. First, a data-mining framework is developed for on-line dynamic security assessment by using adaptive ensemble decision tree learning of real-time synchrophasor measurements. Under this framework, novel on-line dynamic security assessment schemes are devised, aiming to handle various factors (including variations of operating conditions, forced system topology change, and loss of critical synchrophasor measurements) that can have significant impact on the performance of conventional data-mining based on-line DSA schemes. Then, in the context of post-disturbance analysis, fault detection and localization of line outage is investigated using a dependency graph approach. It is shown that a dependency graph for voltage phase angles can be built according to the interconnection structure of power system, and line outage events can be detected and localized through networked data fusion of the synchrophasor measurements collected from multiple locations of power grids. Along a more practical avenue, a decentralized networked data fusion scheme is proposed for efficient fault detection and localization.
ContributorsHe, Miao (Author) / Zhang, Junshan (Thesis advisor) / Vittal, Vijay (Thesis advisor) / Hedman, Kory (Committee member) / Si, Jennie (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2013
151341-Thumbnail Image.png
Description
With the rapid development of mobile sensing technologies like GPS, RFID, sensors in smartphones, etc., capturing position data in the form of trajectories has become easy. Moving object trajectory analysis is a growing area of interest these days owing to its applications in various domains such as marketing, security, traffic

With the rapid development of mobile sensing technologies like GPS, RFID, sensors in smartphones, etc., capturing position data in the form of trajectories has become easy. Moving object trajectory analysis is a growing area of interest these days owing to its applications in various domains such as marketing, security, traffic monitoring and management, etc. To better understand movement behaviors from the raw mobility data, this doctoral work provides analytic models for analyzing trajectory data. As a first contribution, a model is developed to detect changes in trajectories with time. If the taxis moving in a city are viewed as sensors that provide real time information of the traffic in the city, a change in these trajectories with time can reveal that the road network has changed. To detect changes, trajectories are modeled with a Hidden Markov Model (HMM). A modified training algorithm, for parameter estimation in HMM, called m-BaumWelch, is used to develop likelihood estimates under assumed changes and used to detect changes in trajectory data with time. Data from vehicles are used to test the method for change detection. Secondly, sequential pattern mining is used to develop a model to detect changes in frequent patterns occurring in trajectory data. The aim is to answer two questions: Are the frequent patterns still frequent in the new data? If they are frequent, has the time interval distribution in the pattern changed? Two different approaches are considered for change detection, frequency-based approach and distribution-based approach. The methods are illustrated with vehicle trajectory data. Finally, a model is developed for clustering and outlier detection in semantic trajectories. A challenge with clustering semantic trajectories is that both numeric and categorical attributes are present. Another problem to be addressed while clustering is that trajectories can be of different lengths and also have missing values. A tree-based ensemble is used to address these problems. The approach is extended to outlier detection in semantic trajectories.
ContributorsKondaveeti, Anirudh (Author) / Runger, George C. (Thesis advisor) / Mirchandani, Pitu (Committee member) / Pan, Rong (Committee member) / Maciejewski, Ross (Committee member) / Arizona State University (Publisher)
Created2012
151546-Thumbnail Image.png
Description
Battery energy storage has shown a lot of potential in the recent past to be effective in various grid services due to its near instantaneous ramp rates and modularity. This thesis aims to determine the commercial viability of customer premises and substation sited battery energy storage systems. Five different types

Battery energy storage has shown a lot of potential in the recent past to be effective in various grid services due to its near instantaneous ramp rates and modularity. This thesis aims to determine the commercial viability of customer premises and substation sited battery energy storage systems. Five different types of services have been analyzed considering current market pricing of Lithium-ion batteries and power conditioning equipment. Energy Storage Valuation Tool 3.0 (Beta) has been used to exclusively determine the value of energy storage in the services analyzed. The results indicate that on the residential level, Lithium-ion battery energy storage may not be a cost beneficial option for retail tariff management or demand charge management as only 20-30% of the initial investment is recovered at the end of 15 year plant life. SRP's two retail Time-of-Use price plans E-21 and E-26 were analyzed in respect of their ability to increase returns from storage compared to those with flat pricing. It was observed that without a coupled PV component, E-21 was more suitable for customer premises energy storage, however, its revenue stream reduces with addition to PV. On the grid scale, however, with carefully chosen service hierarchy such as distribution investment deferral, spinning or balancing reserve support, the initial investment can be recovered to an extent of about 50-70%. The study done here is specific to Salt River Project inputs and data. Results for all the services analyzed are highly location specific and are only indicative of the overall viability and returns from them.
ContributorsNadkarni, Aditya (Author) / Karady, George G. (Thesis advisor) / Ayyanar, Raja (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2013
151561-Thumbnail Image.png
Description
This dissertation presents a new hybrid fault current limiter (FCL) topology that is primarily intended to protect single-phase power equipment. It can however be extended to protect three phase systems but would need three devices to protect each individual phase. In comparison against the existing fault current limiter technology, the

This dissertation presents a new hybrid fault current limiter (FCL) topology that is primarily intended to protect single-phase power equipment. It can however be extended to protect three phase systems but would need three devices to protect each individual phase. In comparison against the existing fault current limiter technology, the salient fea-tures of the proposed topology are: a) provides variable impedance that provides a 50% reduction in prospective fault current; b) near instantaneous response time which is with-in the first half cycle (1-4 ms); c) the use of semiconductor switches as the commutating switch which produces reduced leakage current, reduced losses, improved reliability, and a faster switch time (ns-µs); d) zero losses in steady-state operation; e) use of a Neodym-ium (NdFeB) permanent magnet as the limiting impedance which reduces size, cost, weight, eliminates DC biasing and cooling costs; f) use of Pulse Width Modulation (PWM) to control the magnitude of the fault current to a user's desired level. g) experi-mental test system is developed and tested to prove the concepts of the proposed FCL. This dissertation presents the proposed topology and its working principle backed up with numerical verifications, simulation results, and hardware implementation results. Conclu-sions and future work are also presented.
ContributorsPrigmore, Jay (Author) / Karady, George G. (Thesis advisor) / Ayyanar, Raja (Committee member) / Holbert, Keith E. (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2013
Description
To guide the timetabling and vehicle assignment of urban bus systems, a group of optimization models were developed for scenarios from simple to complex. The model took the interaction of prospective passengers and bus companies into consideration to achieve the maximum financial benefit as

To guide the timetabling and vehicle assignment of urban bus systems, a group of optimization models were developed for scenarios from simple to complex. The model took the interaction of prospective passengers and bus companies into consideration to achieve the maximum financial benefit as well as social satisfaction. The model was verified by a series of case studies and simulation from which some interesting conclusions were drawn.
ContributorsHuang, Shiyang (Author) / Askin, Ronald G. (Thesis advisor) / Mirchandani, Pitu (Committee member) / McCarville, Daniel R. (Committee member) / Arizona State University (Publisher)
Created2014
153544-Thumbnail Image.png
Description
The electric power system is one of the largest, most complicated, and most important cyber-physical systems in the world. The link between the cyber and physical level is the Supervisory Control and Data Acquisition (SCADA) systems and Energy Management Systems (EMS). Their functions include monitoring the real-time system operation

The electric power system is one of the largest, most complicated, and most important cyber-physical systems in the world. The link between the cyber and physical level is the Supervisory Control and Data Acquisition (SCADA) systems and Energy Management Systems (EMS). Their functions include monitoring the real-time system operation through state estimation (SE), controlling the system to operate reliably, and optimizing the system operation efficiency. The SCADA acquires the noisy measurements, such as voltage angle and magnitude, line power flows, and line current magnitude, from the remote terminal units (RTUs). These raw data are firstly sent to the SE, which filters all the noisy data and derives the best estimate of the system state. Then the estimated states are used for other EMS functions, such as contingency analysis, optimal power flow, etc.

In the existing state estimation process, there is no defense mechanism for any malicious attacks. Once the communication channel between the SCADA and RTUs is hijacked by the attacker, the attacker can perform a man-in-middle attack and send data of its choice. The only step that can possibly detect the attack during the state estimation process is the bad data detector. Unfortunately, even the bad data detector is unable to detect a certain type of attack, known as the false data injection (FDI) attacks.

Diagnosing the physical consequences of such attacks, therefore, is very important to understand system stability. In this thesis, theoretical general attack models for AC and DC attacks are given and an optimization problem for the worst-case overload attack is formulated. Furthermore, physical consequences of FDI attacks, based on both DC and AC model, are addressed. Various scenarios with different attack targets and system configurations are simulated. The details of the research, results obtained and conclusions drawn are presented in this document.
ContributorsLiang, Jingwen (Author) / Sankar, Lalitha (Thesis advisor) / Kosut, Oliver (Thesis advisor) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2015
153348-Thumbnail Image.png
Description
This research develops heuristics for scheduling electric power production amid uncertainty. Reliability is becoming more difficult to manage due to growing uncertainty from renewable resources. This challenge is compounded by the risk of resource outages, which can occur any time and without warning. Stochastic optimization is a promising tool but

This research develops heuristics for scheduling electric power production amid uncertainty. Reliability is becoming more difficult to manage due to growing uncertainty from renewable resources. This challenge is compounded by the risk of resource outages, which can occur any time and without warning. Stochastic optimization is a promising tool but remains computationally intractable for large systems. The models used in industry instead schedule for the forecast and withhold generation reserve for scenario response, but they are blind to how this reserve may be constrained by network congestion. This dissertation investigates more effective heuristics to improve economics and reliability in power systems where congestion is a concern.

Two general approaches are developed. Both approximate the effects of recourse decisions without actually solving a stochastic model. The first approach procures more reserve whenever approximate recourse policies stress the transmission network. The second approach procures reserve at prime locations by generalizing the existing practice of reserve disqualification. The latter approach is applied for feasibility and is later extended to limit scenario costs. Testing demonstrates expected cost improvements around 0.5%-1.0% for the IEEE 73-bus test case, which can translate to millions of dollars per year even for modest systems. The heuristics developed in this dissertation perform somewhere between established deterministic and stochastic models: providing an economic benefit over current practices without substantially increasing computational times.
ContributorsLyon, Joshua Daniel (Author) / Zhang, Muhong (Thesis advisor) / Hedman, Kory W (Thesis advisor) / Askin, Ronald G. (Committee member) / Mirchandani, Pitu (Committee member) / Arizona State University (Publisher)
Created2015
150247-Thumbnail Image.png
Description
The electric transmission grid is conventionally treated as a fixed asset and is operated around a single topology. Though several instances of switching transmission lines for corrective mechaism, congestion management, and minimization of losses can be found in literature, the idea of co-optimizing transmission with generation dispatch has not been

The electric transmission grid is conventionally treated as a fixed asset and is operated around a single topology. Though several instances of switching transmission lines for corrective mechaism, congestion management, and minimization of losses can be found in literature, the idea of co-optimizing transmission with generation dispatch has not been widely investigated. Network topology optimization exploits the redundancies that are an integral part of the network to allow for improvement in dispatch efficiency. Although, the concept of a dispatchable network initially appears counterintuitive questioning the wisdom of switching transmission lines on a more regu-lar basis, results obtained in the previous research on transmission switching with a Direct Current Optimal Power Flow (DCOPF) show significant cost reductions. This thesis on network topology optimization with ACOPF emphasizes the need for additional research in this area. It examines the performance of network topology optimization in an Alternating Current (AC) setting and its impact on various parameters like active power loss and voltages that are ignored in the DC setting. An ACOPF model, with binary variables representing the status of transmission lines incorporated into the formulation, is written in AMPL, a mathematical programming language and this optimization problem is solved using the solver KNITRO. ACOPF is a non-convex, nonlinear optimization problem, making it a very hard problem to solve. The introduction of bi-nary variables makes ACOPF a mixed integer nonlinear programming problem, further increasing the complexity of the optimization problem. An iterative method of opening each transmission line individually before choosing the best solution has been proposed as a purely investigative approach to studying the impact of transmission switching with ACOPF. Economic savings of up to 6% achieved using this approach indicate the potential of this concept. In addition, a heuristic has been proposed to improve the computational efficiency of network topology optimization. This research also makes a comparative analysis between transmission switching in a DC setting and switching in an AC setting. Results presented in this thesis indicate significant economic savings achieved by controlled topology optimization, thereby reconfirming the need for further examination of this idea.
ContributorsPotluri, Tejaswi (Author) / Hedman, Kory (Thesis advisor) / Vittal, Vijay (Committee member) / Heydt, Gerald (Committee member) / Arizona State University (Publisher)
Created2011
149934-Thumbnail Image.png
Description
This research work describes the design of a fault current limiter (FCL) using digital logic and a microcontroller based data acquisition system for an ultra fast pilot protection system. These systems have been designed according to the requirements of the Future Renewable Electric Energy Delivery and Management (FREEDM) system (or

This research work describes the design of a fault current limiter (FCL) using digital logic and a microcontroller based data acquisition system for an ultra fast pilot protection system. These systems have been designed according to the requirements of the Future Renewable Electric Energy Delivery and Management (FREEDM) system (or loop), a 1 MW green energy hub. The FREEDM loop merges advanced power electronics technology with information tech-nology to form an efficient power grid that can be integrated with the existing power system. With the addition of loads to the FREEDM system, the level of fault current rises because of increased energy flow to supply the loads, and this requires the design of a limiter which can limit this current to a level which the existing switchgear can interrupt. The FCL limits the fault current to around three times the rated current. Fast switching Insulated-gate bipolar transistor (IGBT) with its gate control logic implements a switching strategy which enables this operation. A complete simulation of the system was built on Simulink and it was verified that the FCL limits the fault current to 1000 A compared to more than 3000 A fault current in the non-existence of a FCL. This setting is made user-defined. In FREEDM system, there is a need to interrupt a fault faster or make intelligent deci-sions relating to fault events, to ensure maximum availability of power to the loads connected to the system. This necessitates fast acquisition of data which is performed by the designed data acquisition system. The microcontroller acquires the data from a current transformer (CT). Mea-surements are made at different points in the FREEDM system and merged together, to input it to the intelligent protection algorithm that has been developed by another student on the project. The algorithm will generate a tripping signal in the event of a fault. The developed hardware and the programmed software to accomplish data acquisition and transmission are presented here. The designed FCL ensures that the existing switchgear equipments need not be replaced thus aiding future power system expansion. The developed data acquisition system enables fast fault sensing in protection schemes improving its reliability.
ContributorsThirumalai, Arvind (Author) / Karady, George G. (Thesis advisor) / Vittal, Vijay (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2011