Matching Items (1)

136304-Thumbnail Image.png

Ionic Liquids: A Meta-Analysis of the Toxicity Literature

Description

A meta-analysis was conducted to compare the total amount of ionic liquid (IL) literature (n = 39,036) to the body of publications dealing with IL toxicity (n = 213), with

A meta-analysis was conducted to compare the total amount of ionic liquid (IL) literature (n = 39,036) to the body of publications dealing with IL toxicity (n = 213), with the goal of establishing the state of knowledge and existing information gaps. Publications on IL toxicity were collected from the SciFinder database and sorted by cation and model organism studied. Studies focusing on pharmacokinetics and drug development were excluded, as were structure-activity relationship methods of data collection. Total publishing activity was used as a measure to gauge research and industrial usage of ILs as well as the knowledge base of toxicology. Five of the most commonly studied IL cations were identified and used to establish a relationship between toxicity data and potential of commercial use: imidazolium, ammonium, phosphonium, pyridinium, and pyrrolidinium. Toxicology publications for all IL cations represented 1.2% ± 0.62% of the total publishing activity; compared with other industrial chemicals, these numbers indicate that there is still a paucity of studies on the adverse effects of this class of chemicals. In vitro models and marine bacteria were the most frequently studied biological systems, contributing 18% and 15%, respectively, to the total body of IL toxicity studies. Whole animal studies (n = 87) comprised 41% of IL toxicity studies, with a subset of in vivo mammalian models consisting of 8%. Human toxicology data were found to be limited to in vitro analyses, indicating substantial knowledge gaps. Risks from long-term and chronic low-level exposure to ILs have not been established yet for any model organisms, reemphasizing the need for filling crucial knowledge gaps concerning human health effects and the environmental safety of ILs. Adding to the existing knowledge of the molecular toxicity characteristics of ILs can help inform the design of greener, less toxic and more benign IL technologies.

Contributors

Agent

Created

Date Created
  • 2015-05