Matching Items (25)

136775-Thumbnail Image.png

Analysis of Learning Retention throughout Aging

Description

In this paper, it is determined that learning retention decreases with age and there is a linear rate of decrease. In this study, four male Long-Evans Rats were used. The rats were each trained in 4 different tasks throughout their

In this paper, it is determined that learning retention decreases with age and there is a linear rate of decrease. In this study, four male Long-Evans Rats were used. The rats were each trained in 4 different tasks throughout their lifetime, using a food reward as motivation to work. Rats were said to have learned a task at the age when they received the highest accuracy during a task. A regression of learning retention was created for the set of studied rats: Learning Retention = 112.9 \u2014 0.085919 x (Age at End of Task), indicating that learning retention decreases at a linear rate, although rats have different rates of decrease of learning retention. The presence of behavioral training was determined not to have a positive impact on this rate. In behavioral studies, there were statistically significant differences between timid/outgoing and large ball ability between W12 and Z12. Rat W12 had overall better learning retention and also was more compliant, did not resist being picked up and traveled more frequently at high speeds (in the large ball) than Z12. Further potential studies include implanting an electrode into the frontal cortex in order to compare neuro feedback with learning retention, and using human subjects to find the rate of decrease in learning retention. The implication of this study, if also true for human subjects, is that older persons may need enhanced training or additional refresher training in order to retain information that is learned at a later age.

Contributors

Agent

Created

Date Created
2014-05

An Empirical Study of View Construction for Multi-View Learning

Description

Multi-view learning, a subfield of machine learning that aims to improve model performance by training on multiple views of the data, has been studied extensively in the past decades. It is typically applied in contexts where the input features naturally

Multi-view learning, a subfield of machine learning that aims to improve model performance by training on multiple views of the data, has been studied extensively in the past decades. It is typically applied in contexts where the input features naturally form multiple groups or views. An example of a naturally multi-view context is a data set of websites, where each website is described not only by the text on the page, but also by the text of hyperlinks pointing to the page. More recently, various studies have demonstrated the initial success of applying multi-view learning on single-view data with multiple artificially constructed views. However, there lacks a systematic study regarding the effectiveness of such artificially constructed views. To bridge this gap, this thesis begins by providing a high-level overview of multi-view learning with the co-training algorithm. Co-training is a classic semi-supervised learning algorithm that takes advantage of both labelled and unlabelled examples in the data set for training. Then, the thesis presents a web-based tool developed in Python allowing users to experiment with and compare the performance of multiple view construction approaches on various data sets. The supported view construction approaches in the web-based tool include subsampling, Optimal Feature Set Partitioning, and the genetic algorithm. Finally, the thesis presents an empirical comparison of the performance of these approaches, not only against one another, but also against traditional single-view models. The findings show that a simple subsampling approach combined with co-training often outperforms both the other view construction approaches, as well as traditional single-view methods.

Contributors

Agent

Created

Date Created
2019-12

153085-Thumbnail Image.png

Simultaneous variable and feature group selection in heterogeneous learning: optimization and applications

Description

Advances in data collection technologies have made it cost-effective to obtain heterogeneous data from multiple data sources. Very often, the data are of very high dimension and feature selection is preferred in order to reduce noise, save computational cost and

Advances in data collection technologies have made it cost-effective to obtain heterogeneous data from multiple data sources. Very often, the data are of very high dimension and feature selection is preferred in order to reduce noise, save computational cost and learn interpretable models. Due to the multi-modality nature of heterogeneous data, it is interesting to design efficient machine learning models that are capable of performing variable selection and feature group (data source) selection simultaneously (a.k.a bi-level selection). In this thesis, I carry out research along this direction with a particular focus on designing efficient optimization algorithms. I start with a unified bi-level learning model that contains several existing feature selection models as special cases. Then the proposed model is further extended to tackle the block-wise missing data, one of the major challenges in the diagnosis of Alzheimer's Disease (AD). Moreover, I propose a novel interpretable sparse group feature selection model that greatly facilitates the procedure of parameter tuning and model selection. Last but not least, I show that by solving the sparse group hard thresholding problem directly, the sparse group feature selection model can be further improved in terms of both algorithmic complexity and efficiency. Promising results are demonstrated in the extensive evaluation on multiple real-world data sets.

Contributors

Agent

Created

Date Created
2014

154769-Thumbnail Image.png

Directional prediction of stock prices using breaking news on Twitter

Description

Stock market news and investing tips are popular topics in Twitter. In this dissertation, first I utilize a 5-year financial news corpus comprising over 50,000 articles collected from the NASDAQ website matching the 30 stock symbols in Dow Jones Index

Stock market news and investing tips are popular topics in Twitter. In this dissertation, first I utilize a 5-year financial news corpus comprising over 50,000 articles collected from the NASDAQ website matching the 30 stock symbols in Dow Jones Index (DJI) to train a directional stock price prediction system based on news content. Next, I proceed to show that information in articles indicated by breaking Tweet volumes leads to a statistically significant boost in the hourly directional prediction accuracies for the DJI stock prices mentioned in these articles. Secondly, I show that using document-level sentiment extraction does not yield a statistically significant boost in the directional predictive accuracies in the presence of other 1-gram keyword features. Thirdly I test the performance of the system on several time-frames and identify the 4 hour time-frame for both the price charts and for Tweet breakout detection as the best time-frame combination. Finally, I develop a set of price momentum based trade exit rules to cut losing trades early and to allow the winning trades run longer. I show that the Tweet volume breakout based trading system with the price momentum based exit rules not only improves the winning accuracy and the return on investment, but it also lowers the maximum drawdown and achieves the highest overall return over maximum drawdown.

Contributors

Agent

Created

Date Created
2016

162017-Thumbnail Image.png

Learning from the Data Heterogeneity for Data Imputation

Description

Data mining, also known as big data analysis, has been identified as a critical and challenging process for a variety of applications in real-world problems. Numerous datasets are collected and generated every day to store the information. The rise in

Data mining, also known as big data analysis, has been identified as a critical and challenging process for a variety of applications in real-world problems. Numerous datasets are collected and generated every day to store the information. The rise in the number of data volumes and data modality has resulted in the increased demand for data mining methods and strategies of finding anomalies, patterns, and correlations within large data sets to predict outcomes. Effective machine learning methods are widely adapted to build the data mining pipeline for various purposes like business understanding, data understanding, data preparation, modeling, evaluation, and deployment. The major challenges for effectively and efficiently mining big data include (1) data heterogeneity and (2) missing data. Heterogeneity is the natural characteristic of big data, as the data is typically collected from different sources with diverse formats. The missing value is the most common issue faced by the heterogeneous data analysis, which resulted from variety of factors including the data collecting processing, user initiatives, erroneous data entries, and so on. In response to these challenges, in this thesis, three main research directions with application scenarios have been investigated: (1) Mining and Formulating Heterogeneous Data, (2) missing value imputation strategy in various application scenarios in both offline and online manner, and (3) missing value imputation for multi-modality data. Multiple strategies with theoretical analysis are presented, and the evaluation of the effectiveness of the proposed algorithms compared with state-of-the-art methods is discussed.

Contributors

Agent

Created

Date Created
2021

155262-Thumbnail Image.png

Mason: Real-time NBA Matches Outcome Prediction

Description

The National Basketball Association (NBA) is the most popular basketball league in the world. The world-wide mighty high popularity to the league leads to large amount of interesting and challenging research problems. Among them, predicting the outcome of an upcoming

The National Basketball Association (NBA) is the most popular basketball league in the world. The world-wide mighty high popularity to the league leads to large amount of interesting and challenging research problems. Among them, predicting the outcome of an upcoming NBA match between two specific teams according to their historical data is especially attractive. With rapid development of machine learning techniques, it opens the door to examine the correlation between statistical data and outcome of matches. However, existing methods typically make predictions before game starts. In-game prediction, or real-time prediction, has not yet been sufficiently studied. During a match, data are cumulatively generated, and with the accumulation, data become more comprehensive and potentially embrace more predictive power, so that prediction accuracy may dynamically increase with a match goes on. In this study, I design game-level and player-level features based on realtime data of NBA matches and apply a machine learning model to investigate the possibility and characteristics of using real-time prediction in NBA matches.

Contributors

Agent

Created

Date Created
2017

156246-Thumbnail Image.png

Diffusion in Networks: Source Localization, History Reconstruction and Real-Time Network Robustification

Description

Diffusion processes in networks can be used to model many real-world processes, such as the propagation of a rumor on social networks and cascading failures on power networks. Analysis of diffusion processes in networks can help us answer important questions

Diffusion processes in networks can be used to model many real-world processes, such as the propagation of a rumor on social networks and cascading failures on power networks. Analysis of diffusion processes in networks can help us answer important questions such as the role and the importance of each node in the network for spreading the diffusion and how to top or contain a cascading failure in the network. This dissertation consists of three parts.

In the first part, we study the problem of locating multiple diffusion sources in networks under the Susceptible-Infected-Recovered (SIR) model. Given a complete snapshot of the network, we developed a sample-path-based algorithm, named clustering and localization, and proved that for regular trees, the estimators produced by the proposed algorithm are within a constant distance from the real sources with a high probability. Then, we considered the case in which only a partial snapshot is observed and proposed a new algorithm, named Optimal-Jordan-Cover (OJC). The algorithm first extracts a subgraph using a candidate selection algorithm that selects source candidates based on the number of observed infected nodes in their neighborhoods. Then, in the extracted subgraph, OJC finds a set of nodes that "cover" all observed infected nodes with the minimum radius. The set of nodes is called the Jordan cover, and is regarded as the set of diffusion sources. We proved that OJC can locate all sources with probability one asymptotically with partial observations in the Erdos-Renyi (ER) random graph. Multiple experiments on different networks were done, which show our algorithms outperform others.

In the second part, we tackle the problem of reconstructing the diffusion history from partial observations. We formulated the diffusion history reconstruction problem as a maximum a posteriori (MAP) problem and proved the problem is NP hard. Then we proposed a step-by- step reconstruction algorithm, which can always produce a diffusion history that is consistent with the partial observations. Our experimental results based on synthetic and real networks show that the algorithm significantly outperforms some existing methods.

In the third part, we consider the problem of improving the robustness of an interdependent network by rewiring a small number of links during a cascading attack. We formulated the problem as a Markov decision process (MDP) problem. While the problem is NP-hard, we developed an effective and efficient algorithm, RealWire, to robustify the network and to mitigate the damage during the attack. Extensive experimental results show that our algorithm outperforms other algorithms on most of the robustness metrics.

Contributors

Agent

Created

Date Created
2018

156577-Thumbnail Image.png

Multi-layered HITS on Multi-sourced Networks

Description

Network mining has been attracting a lot of research attention because of the prevalence of networks. As the world is becoming increasingly connected and correlated, networks arising from inter-dependent application domains are often collected from different sources, forming the so-called

Network mining has been attracting a lot of research attention because of the prevalence of networks. As the world is becoming increasingly connected and correlated, networks arising from inter-dependent application domains are often collected from different sources, forming the so-called multi-sourced networks. Examples of such multi-sourced networks include critical infrastructure networks, multi-platform social networks, cross-domain collaboration networks, and many more. Compared with single-sourced network, multi-sourced networks bear more complex structures and therefore could potentially contain more valuable information.

This thesis proposes a multi-layered HITS (Hyperlink-Induced Topic Search) algorithm to perform the ranking task on multi-sourced networks. Specifically, each node in the network receives an authority score and a hub score for evaluating the value of the node itself and the value of its outgoing links respectively. Based on a recent multi-layered network model, which allows more flexible dependency structure across different sources (i.e., layers), the proposed algorithm leverages both within-layer smoothness and cross-layer consistency. This essentially allows nodes from different layers to be ranked accordingly. The multi-layered HITS is formulated as a regularized optimization problem with non-negative constraint and solved by an iterative update process. Extensive experimental evaluations demonstrate the effectiveness and explainability of the proposed algorithm.

Contributors

Agent

Created

Date Created
2018

157587-Thumbnail Image.png

Learning from task heterogeneity in social media

Description

In recent years, the rise in social media usage both vertically in terms of the number of users by platform and horizontally in terms of the number of platforms per user has led to data explosion.

User-generated social media content provides

In recent years, the rise in social media usage both vertically in terms of the number of users by platform and horizontally in terms of the number of platforms per user has led to data explosion.

User-generated social media content provides an excellent opportunity to mine data of interest and to build resourceful applications. The rise in the number of healthcare-related social media platforms and the volume of healthcare knowledge available online in the last decade has resulted in increased social media usage for personal healthcare. In the United States, nearly ninety percent of adults, in the age group 50-75, have used social media to seek and share health information. Motivated by the growth of social media usage, this thesis focuses on healthcare-related applications, study various challenges posed by social media data, and address them through novel and effective machine learning algorithms.

The major challenges for effectively and efficiently mining social media data to build functional applications include: (1) Data reliability and acceptance: most social media data (especially in the context of healthcare-related social media) is not regulated and little has been studied on the benefits of healthcare-specific social media; (2) Data heterogeneity: social media data is generated by users with both demographic and geographic diversity; (3) Model transparency and trustworthiness: most existing machine learning models for addressing heterogeneity are considered as black box models, not many providing explanations for why they do what they do to trust them.

In response to these challenges, three main research directions have been investigated in this thesis: (1) Analyzing social media influence on healthcare: to study the real world impact of social media as a source to offer or seek support for patients with chronic health conditions; (2) Learning from task heterogeneity: to propose various models and algorithms that are adaptable to new social media platforms and robust to dynamic social media data, specifically on modeling user behaviors, identifying similar actors across platforms, and adapting black box models to a specific learning scenario; (3) Explaining heterogeneous models: to interpret predictive models in the presence of task heterogeneity. In this thesis, novel algorithms with theoretical analysis from various aspects (e.g., time complexity, convergence properties) have been proposed. The effectiveness and efficiency of the proposed algorithms is demonstrated by comparison with state-of-the-art methods and relevant case studies.

Contributors

Agent

Created

Date Created
2019

157589-Thumbnail Image.png

Learning with attributed networks: algorithms and applications

Description

Attributes - that delineating the properties of data, and connections - that describing the dependencies of data, are two essential components to characterize most real-world phenomena. The synergy between these two principal elements renders a unique data representation - the

Attributes - that delineating the properties of data, and connections - that describing the dependencies of data, are two essential components to characterize most real-world phenomena. The synergy between these two principal elements renders a unique data representation - the attributed networks. In many cases, people are inundated with vast amounts of data that can be structured into attributed networks, and their use has been attractive to researchers and practitioners in different disciplines. For example, in social media, users interact with each other and also post personalized content; in scientific collaboration, researchers cooperate and are distinct from peers by their unique research interests; in complex diseases studies, rich gene expression complements to the gene-regulatory networks. Clearly, attributed networks are ubiquitous and form a critical component of modern information infrastructure. To gain deep insights from such networks, it requires a fundamental understanding of their unique characteristics and be aware of the related computational challenges.

My dissertation research aims to develop a suite of novel learning algorithms to understand, characterize, and gain actionable insights from attributed networks, to benefit high-impact real-world applications. In the first part of this dissertation, I mainly focus on developing learning algorithms for attributed networks in a static environment at two different levels: (i) attribute level - by designing feature selection algorithms to find high-quality features that are tightly correlated with the network topology; and (ii) node level - by presenting network embedding algorithms to learn discriminative node embeddings by preserving node proximity w.r.t. network topology structure and node attribute similarity. As changes are essential components of attributed networks and the results of learning algorithms will become stale over time, in the second part of this dissertation, I propose a family of online algorithms for attributed networks in a dynamic environment to continuously update the learning results on the fly. In fact, developing application-aware learning algorithms is more desired with a clear understanding of the application domains and their unique intents. As such, in the third part of this dissertation, I am also committed to advancing real-world applications on attributed networks by incorporating the objectives of external tasks into the learning process.

Contributors

Agent

Created

Date Created
2019