Matching Items (28)

133262-Thumbnail Image.png

Inter-individual Variation in Nutrient Preference among Acromyrmex versicolor Foragers

Description

In order to survive, species must regulate their intake of nutrients. In desert leafcutter ant colonies, acquisition of nutrients is not only important for maintaining the health of the colony, but also for the survival of a fungus which the

In order to survive, species must regulate their intake of nutrients. In desert leafcutter ant colonies, acquisition of nutrients is not only important for maintaining the health of the colony, but also for the survival of a fungus which the ants cultivate and then consume. This multi-trophic, symbiotic relationship is relatively unique to leafcutter ants and interesting to researchers due to the complexity of how the individual foragers supply nutrients to both the colony and the fungus. The objective of this experiment is to study foraging rates and variation in macronutrient preference among foragers from the same colony of the desert leafcutter ant Acromyrmex versicolor. This study asks if individual foragers vary in their preference of protein to carbohydrate ratios when compared to the overall nutrient content of the colony, and how do these individuals respond as the nutrient content of the available diets increasingly deviates from the previously determined nutritional intake target ratio between 1 Protein:6.3 Carbohydrates to 1 Protein:7.5 Carbohydrates. It was hypothesized that foragers express individualized nutritional preferences that in aggregate balance colony macronutrient consumption, and the number of individuals collecting the diets would decrease as the available nutritional diets deviated away from the colony-level intake target of approximately 1P:7C. The results show trends that support the hypothesis that the number of foraging instances and the number of foragers who exhibit individualized preference towards a certain protein to carbohydrate ratio is highest when the colony is presented with diets that are closest to the colony nutritional intake target.

Contributors

Agent

Created

Date Created
2018-05

131323-Thumbnail Image.png

Adaptation of Camponotus floridanus’ Cuticular Hydrocarbon Profile under High Temperature Conditions

Description

Insects are small creatures highly susceptible to water loss. A major factor in the prevention of water loss through an insect’s cuticle are their cuticular hydrocarbons (CHC), a lipid layer consisting mostly of long-chain hydrocarbons. CHCs consist of different molecules

Insects are small creatures highly susceptible to water loss. A major factor in the prevention of water loss through an insect’s cuticle are their cuticular hydrocarbons (CHC), a lipid layer consisting mostly of long-chain hydrocarbons. CHCs consist of different molecules called alkanes, alkenes, and methyl branched hydrocarbons which all have varying levels of hydrophobicity. Ants are a massively abundant family of insects with important roles in the ecosystem that also utilize CHCs. Camponotus floridanus isare athe native ant species of the Florida Keys which areis known to have variable environmental temperature. Being exposed to temperatures as high as 35 °C, these ants are expected to have mechanisms that allow them to adapt to their environment. It was hypothesized that CHCs may change in concentration or composition as a means to combat the changes in cuticular permeability due to the variable temperatures that the ants experience. We therefore used C. floridanus worker ants to learn more about CHC plasticity in insects when exposed to elevated temperatures. We found four CHC componentspeaks that showed a statistically significant increase in concentration when comparing the control to treatment colonies: 3,7 dimethyl C31, an underdetermined methyl branched C31, 3,7,11 trimethyl C31, and an undetermined tetramethylbranched C31. These significant changes in concentration occurred on longer chain hydrocarbons. Under further examination, it was found that there was a strong positive correlation between elution time and the differences in medians of peak area between control and treatment colonies. This shows that there was a shift in the CHC profile resulting in an increased concentration of longer chained methyl-branched hydrocarbons. It also suggests that branched hydrocarbons also play some role in the water proofing mechanism of C. floridanus.

Contributors

Agent

Created

Date Created
2020-05

134024-Thumbnail Image.png

The Effects of a Pesticide and Maturation on the Honeybee (Apis mellifera) blood-brain barrier

Description

Honeybees (Apis mellifera) are pollinators that face multiple challenges during foraging such as fungicides applied to floral sources. Fungicides are chemicals used to inhibit key fungal mechanisms like metabolism, but their effects remain relatively unknown in bees. In addition, studying

Honeybees (Apis mellifera) are pollinators that face multiple challenges during foraging such as fungicides applied to floral sources. Fungicides are chemicals used to inhibit key fungal mechanisms like metabolism, but their effects remain relatively unknown in bees. In addition, studying the maturing bee can help us identify demographics that are more vulnerable to toxic materials like fungicides. The purpose of this study is test whether maturation and the fungicide Pristine influence the permeability of the blood-brain barrier. Specifically, we use a transportable dye to test how blood brain barrier transporter function responds to toxic insult and how it changes with age. Oral ingestion of Pristine by female workers did not have an effect on blood brain barrier permeability which suggests Pristine may have no or longer term consequences in the bee. However, blood brain barrier permeability changed with the bee's age which could be explained by the regulation of blood brain barrier transporters during natural transitions in hive task or the presence of hemolymph protein filtration

Contributors

Agent

Created

Date Created
2018-05

129054-Thumbnail Image.png

Efficient Utilization of Aerobic Metabolism Helps Tibetan Locusts Conquer Hypoxia

Description

Background: Responses to hypoxia have been investigated in many species; however, comparative studies between conspecific geographical populations at different altitudes are rare, especially for invertebrates. The migratory locust, Locusta migratoria, is widely distributed around the world, including on the high-altitude Tibetan

Background: Responses to hypoxia have been investigated in many species; however, comparative studies between conspecific geographical populations at different altitudes are rare, especially for invertebrates. The migratory locust, Locusta migratoria, is widely distributed around the world, including on the high-altitude Tibetan Plateau (TP) and the low-altitude North China Plain (NP). TP locusts have inhabited Tibetan Plateau for over 34,000 years and thus probably have evolved superior capacity to cope with hypoxia.

Results: Here we compared the hypoxic responses of TP and NP locusts from morphological, behavioral, and physiological perspectives. We found that TP locusts were more tolerant of extreme hypoxia than NP locusts. To evaluate why TP locusts respond to extreme hypoxia differently from NP locusts, we subjected them to extreme hypoxia and compared their transcriptional responses. We found that the aerobic metabolism was less affected in TP locusts than in NP locusts. RNAi disruption of PDHE1β, an entry gene from glycolysis to TCA cycle, increased the ratio of stupor in TP locusts and decreased the ATP content of TP locusts in hypoxia, confirming that aerobic metabolism is critical for TP locusts to maintain activity in hypoxia.

Conclusions: Our results indicate that TP and NP locusts have undergone divergence in hypoxia tolerance. These findings also indicate that insects can adapt to hypoxic pressure by modulating basic metabolic processes.

Contributors

Agent

Created

Date Created
2013-09-18

130272-Thumbnail Image.png

Nutritional imbalance suppresses migratory phenotypes of the Mongolian locust (Oedaleus asiaticus)

Description

For many species, migration evolves to allow organisms to access better resources. However, the proximate factors that trigger these developmental changes, and how and why these vary across species, remain poorly understood. One prominent hypothesis is that poor-quality food promotes

For many species, migration evolves to allow organisms to access better resources. However, the proximate factors that trigger these developmental changes, and how and why these vary across species, remain poorly understood. One prominent hypothesis is that poor-quality food promotes development of migratory phenotypes and this has been clearly shown for some polyphenic insects. In other animals, particularly long-distance bird migrants, it is clear that high-quality food is required to prepare animals for a successful migration. We tested the effect of diet quality on the flight behaviour and morphology of the Mongolian locust, Oedaleus asiaticus. Locusts reared at high population density and fed low-N grass (performance-enhancing for this species) had enhanced migratory morphology relative to locusts fed high-N grass. Furthermore, locusts fed synthetic diets with an optimal 1 : 2 protein : carbohydrate ratio flew for longer times than locusts fed diets with lower or higher protein : carbohydrate ratios. In contrast to the hypothesis that performance-degrading food should enhance migration, our results support the more nuanced hypothesis that high-quality diets promote development of migratory characteristics when migration is physiologically challenging.

Contributors

Created

Date Created
2017-06-07

135879-Thumbnail Image.png

To what degree can bees identify visual patterns that differ in spatial frequency?

Description

This study illustrates the abilities of the honeybee, Apis mellifera, to learn and differentiate between patterns solely off their spatial frequencies. Patterns were chosen based off of calculations derived from the measurements of the physical construction of the apposition compound

This study illustrates the abilities of the honeybee, Apis mellifera, to learn and differentiate between patterns solely off their spatial frequencies. Patterns were chosen based off of calculations derived from the measurements of the physical construction of the apposition compound eye, which led to predictions of what the bees could theoretically see. The hypothesis was then that bees would have a visual threshold where patterns with spatial frequencies that fall below this line should be easily distinguishable, and patterns above the threshold would have scores that mimic if the bees made choices randomly. There were 9 patterns tested, all with different spatial frequencies and in the colors of black, white, and gray. The bees were tested on their learning and pattern differentiation abilities with 10 pattern comparisons, with the lower frequency of the two being associated with an unscented sucrose solution reward. The results were surprising in that the previous studies pointing towards this visual threshold were inaccurate because of some of the patterns being learning in an intermediate ability. These intermediate scores suggest that the calculations predicting what the bees could see clearly were slightly wrong because it was more likely that the bees saw those images in more of a blur, which resulted in their intermediate score. Honeybees have served as a useful model organisms over the decades with studying learning involving visual information. This study lacked in its total numbers of trials and bees tested, which could have led to incomplete results, and this showing of an intermediate score and ability. Future studies should continue in order to advance this understanding of a perceptually and cognitively advance processing animal.

Contributors

Agent

Created

Date Created
2015-12

136395-Thumbnail Image.png

Cold populations of flies evolved larger bodies and larger wings made of larger cells

Description

We examined the evolutionary morphological responses of Drosophila melanogaster that had evolved at constant cold (16°), constant hot (25°C), and fluctuating (16° and 25°C). Flies that were exposed to the constant low mean temperature developed larger thorax, wing, and cell

We examined the evolutionary morphological responses of Drosophila melanogaster that had evolved at constant cold (16°), constant hot (25°C), and fluctuating (16° and 25°C). Flies that were exposed to the constant low mean temperature developed larger thorax, wing, and cell sizes than those exposed to constant high mean temperatures. Males and females both responded similarly to thermal treatments in average wing and cell size. The resulting cell area for a given wing size in thermal fluctuating populations remains unclear and remains a subject for future research.

Contributors

Agent

Created

Date Created
2015-05

135604-Thumbnail Image.png

Testing Chronic and Acute Exposure of Selenium on Honey Bee Learning and Memory

Description

Selenium, a group 16 metalloid on the periodic table, is a necessary mineral for many organisms. Trace amounts of selenium are essential for normal development, antioxidant protein function, enzyme function, and hormone regulation (Burden et al., 2016). However, when selenium

Selenium, a group 16 metalloid on the periodic table, is a necessary mineral for many organisms. Trace amounts of selenium are essential for normal development, antioxidant protein function, enzyme function, and hormone regulation (Burden et al., 2016). However, when selenium is found in toxic amounts in organisms, it has been found to substitute for sulfur in proteins, which can be toxic to these animals, and cause oxidative stress (Quinn et al., 2007). Using the previous research done with acute exposure to organic and inorganic selenium compounds, we hypothesized that the inorganic sodium selenate would significantly decrease learning and memory recall for both chronic and acute exposure. We also hypothesized that the consumption of organic methylseleno-L-cysteine by honey bees would decrease learning and memory recall for both the chronic and acute exposure. We further hypothesized that protein carbonyl content would be increased due to oxidative damage caused by selenium in both the sodium selenate and the methylseleno-L-cysteine treatment groups, but that the inorganic selenium compound would increase the carbonyl content more than the methylseleno-L-cysteine. To run the experiments, three tents outside had two colonies in each tent. One tent contained the sodium selenate group, another had the sucrose control, and one contained the methylseleno-L-cysteine group. The treatment groups were fed selenium in their sucrose feeders. The first part of the experiment was training the bees by using proboscis extension response (PER) to teach them to extend their proboscis to the rewarded odor and not to the unrewarded odor. This was done by pairing the rewarded odor with a sucrose reward and not pairing it with the unrewarded odor. Then their short-term and long-term memory recall was tested. The second part of the experiment was checking for oxidative damage by measuring the protein carbonyl content in the bees. Three boxes were set up with the same three treatment groups as used in the tents. The treatment group bees were exposed to selenium in the sucrose feeders and in the pollen patties. After one week, the living bees were removed and frozen. They were then homogenized to extract protein. The first assay run was the protein content assay to establish a standard protein concentration for samples. Then a protein carbonyl assay was run, to determine the protein carbonyl content. Overall, the experiment found that exposure to selenium negatively impacted honey bees learning and memory recall significantly. Chronic exposure to the inorganic selenate reduced the bees' long-term memory abilities to differentiate between odors. With methylseleno-L-cysteine, it had no significant effect for the chronic exposure, but for the acute exposure, it had a significant impairment on their abilities to distinguish between the rewarded and unrewarded odors during conditioning. Our results showed that from our experiment there appeared to be no significant effect of selenium exposure on the increase of carbonylation content in the different treatment groups. This is most likely due to the fact the carbonyl content was not detectable because the protein concentration was low in the samples (approximately 3.5 mg/mL).

Contributors

Agent

Created

Date Created
2016-05

135881-Thumbnail Image.png

The Explutrientoration of Macronutrient Regulation in the Desert Leafcutter

Description

Nutritional balance is a requirement for the survival of all species. This balance is important for complex eusocial organisms as it influences the growth and development of the colony. Leafcutter ants function as tri-trophic systems, harvesting mixed vegetation to cultivate

Nutritional balance is a requirement for the survival of all species. This balance is important for complex eusocial organisms as it influences the growth and development of the colony. Leafcutter ants function as tri-trophic systems, harvesting mixed vegetation to cultivate a fungus garden that in return supplies the colony with food. Examining how the colony deals with nutrient balance is of particular interest because this species forages to provide nutrients for the fungus. There seems to be a feedback system between the fungus and the workers that influences how much of a particular macronutrient should be collected. The objective of this thesis study was to examine the foraging behavior of the desert leaf cutter ant, Acromyrmex versicolor. This study asked how nutrition, in particular the ratio of carbohydrates to proteins, influences the foraging behavior of the colony. It was hypothesized that given a choice of high protein and high carbohydrate diets the leafcutters would forage towards a balance ratio. The results from this experiment showed that A. versicolor forage towards a target ratio of protein to carbohydrate to based diets. This p:c ratio was calculated to be 1:6.2; 1 gram of protein to 6.2 grams of carbohydrate. When colonies were restricted to the high carbohydrate diet, they increased food consumption, consistent with the expectation that they would forage to reach their protein nutrient requirement, however, they reduced foraging on that diet. This suggests that ants avoid overconsuming protein, even when doing so provided more optimal carbohydrate intake. From this study I concluded that nutritional balance is a foraging goal for ant societies, similar to organisms. These results also open the question of how nutrient regulation by leafcutter ants is regulated around their mutualist relationship with another organism, the fungus.

Contributors

Agent

Created

Date Created
2015-12

147633-Thumbnail Image.png

Determining whether generalist herbivores regulate lipid intake

Description

All organisms perform best at a balanced point of intake where nutrients are ingested in specific amounts to confer optimal performance. However, when faced with limited nutrient availability, organisms are forced to make decisions which prioritize intake of certain macronutrients.

All organisms perform best at a balanced point of intake where nutrients are ingested in specific amounts to confer optimal performance. However, when faced with limited nutrient availability, organisms are forced to make decisions which prioritize intake of certain macronutrients. While intake regulation has been more thoroughly studied in omnivores and carnivores, no research exists regarding lipid regulation in generalist herbivores. Traditionally, proteins and carbohydrates were thought to be the most important macronutrient for herbivore intake; however the large differences in lipid nutritional content between different plant species offers lots of potential for regulation of an important macronutrient. We studied whether generalist herbivores can regulate lipid intake, using the migratory locust (Locusta migratoria). Though herbivore protein and carbohydrate intake is well studied, less research studies regulation of lipid intake. We tested this by offering choice diets of varying carbohydrate and lipid content makeup and measuring consumption of each diet choice to determine overall carbohydrate and lipid intake. Four different lipid sources were used in order to control for taste or texture related confounds; canola oil, sunflower oil, grapeseed oil, and a lab designed synthetic oil based on the four most abundant fatty acids in common plant oils. On three out of four diet sources, groups evidences strong regulation of narrow intake target, with little disparity in overall intake of carbohydrate and lipid content between various choice diet treatments. Groups feeding on canola oil and sunflower oil based diets displayed the best regulation based on their having small disparities in intake between treatments, while those feeding on grapeseed oil based diets displayed wide variation in feeding behavior between treatments. Groups feeding on the synthetic oil based diet choice unexpectedly consumed much more carbohydrates than lipids when compared to all other groups. In conclusion, generalist herbivores are capable of regulating lipid intake.

Contributors

Agent

Created

Date Created
2021-05